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Block Designs
and Latin Squares

Author: William C. Arlinghaus, Department of Mathematics and Computer
Science, Lawrence Technological University.

Prerequisites: The prerequisites for this chapter are properties of integers
and basic counting techniques. See Sections 3.4 and 5.1 of Discrete Mathematics
and Its Applications.

Introduction
Suppose that you were given $25,000 to conduct experiments in the following
situation. Five different chemicals can be added during a manufacturing pro-
cess. This process can take place at five different temperatures. Finally, the
process can be performed on any of five different machines. Also, performing
the process once costs $1000.

To obtain the most information possible, you would want to perform the
process with each different chemical as an additive at each different tempera-
ture on each different machine. By the product rule of counting, this would
require 125 experiments, and you would need five times as much money as you
have been allotted.
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Fortunately, statistical analysts have come up with a tool called analysis
of variance which can draw conclusions from less information. If each chemical
can be used at each different temperature and on each different machine, much
information can be obtained. Consider the matrix

⎛
⎜⎜⎜⎜⎝

T1 T2 T3 T4 T5

C1 1 4 5 2 3
C2 3 1 2 4 5
C3 2 5 1 3 4
C4 5 3 4 1 2
C5 4 2 3 5 1

⎞
⎟⎟⎟⎟⎠

Let the rows represent the five chemical additives C1, C2, C3, C4, C5; the
columns represent the temperatures T1, T2, T3, T4, T5; and let the (i, j)th
entry of the matrix be the machine number on which the process is performed.
Since each of the numbers 1, 2, 3, 4, 5 appears exactly once in each row and
exactly once in each column, every chemical appears with every machine, every
temperature appears with every machine, and every (chemical,temperature)
pair appears exactly once. So the experiments above can be performed for
the allotted $25,000, and statistics can be used to gain meaningful information
about the relations among additive, temperature, and machine. A matrix of
the type above is known as a Latin square.

Latin Squares
To generalize this idea to an arbitrary number n, we need an arrangement of
rows and columns in which each of the numbers 1, 2, . . . , n appears exactly
once in each row and column, permitting n tests to create a mix of the n states
represented by the rows and the n states represented by the columns. Hence
we have the following definition.

Definition 1 A Latin square of order n is an n×n matrix whose entries are
the integers 1, 2, . . . , n, arranged so that each integer appears exactly once in
each row and exactly once in each column.

Example 1 One Latin square of order 5 is the matrix
⎛
⎜⎜⎜⎝

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

⎞
⎟⎟⎟⎠ .
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It is easy to generalize this example to any n by making the first row
1, 2, . . . , n; the second row 2, 3, . . . , n, 1; and so on.

In more complicated experiments, it may be necessary to have more than
one Latin square of a given order. But we need some concept of what “different”
means. Certainly

⎛
⎝ 1 2 3

2 3 1
3 1 2

⎞
⎠ and

⎛
⎝ 2 3 1

1 2 3
3 1 2

⎞
⎠

should not be different. To help clarify the situation, we introduce the idea of
a reduced Latin square.

Definition 2 A Latin square is reduced if in the first row and in the first
column the numbers 1, 2, . . . , n appear in natural order.

Example 2 The Latin square

⎛
⎝ 2 3 1

1 2 3
3 1 2

⎞
⎠

can be transformed into reduced form by reversing the first two rows, obtaining

⎛
⎝ 1 2 3

2 3 1
3 1 2

⎞
⎠ .

Since interchanges of rows and columns only amount to changing the names
of those rows and columns, it is always permissible to do this. Thus we can
always transform a Latin square to reduced form. Of course, interchanging
numbers inside the matrix only amounts to a renumbering of the “machines”,
which still is not essentially different.

Definition 3 Two Latin squares are equivalent if one can be transformed
into the other by rearranging rows, rearranging columns, and renaming ele-
ments.
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Even reduced Latin squares can be equivalent, as illustrated in the following
example.

Example 3 Show that the Latin squares

A =

⎛
⎜⎝

1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1

⎞
⎟⎠ and B =

⎛
⎜⎝

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

⎞
⎟⎠

are equivalent.

Solution: We first interchange rows 3 and 4 of A to obtain

⎛
⎜⎝

1 2 3 4
2 4 1 3
4 3 2 1
3 1 4 2

⎞
⎟⎠ .

We then interchange columns 3 and 4, obtaining

⎛
⎜⎝

1 2 4 3
2 4 3 1
4 3 1 2
3 1 2 4

⎞
⎟⎠

Finally, by interchanging the “names” 3 and 4, we obtain B.

Evidently, it is not obvious whether or not two Latin squares are equivalent.
But, since equivalence is an equivalence relation on Latin squares, there is some
finite number of distinct classes of non-equivalent Latin squares of order n.

Orthogonal Latin Squares
Now reconsider the problem of the Introduction. Suppose in addition to chem-
ical, temperature, and machine, the day of the week on which the process is
performed is also significant. Still each chemical and temperature must go to-
gether — now not only on each machine exactly once, but also on each day of
the week exactly once.

If we use two Latin squares, one for the machine number and the other for
the day of the week, the machines and days of the week will still be properly
mixed if the two Latin squares are related properly, referred to as orthogonal.
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Definition 4 Two n × n Latin squares L1 = (aij) and L2 = (bij) are called
orthogonal if every ordered pair of symbols (k1, k2), 1 ≤ k1 ≤ n, 1 ≤ k2 ≤ n,
occurs among the n2 ordered pairs (aij , bij).

Example 4 Show that the two Latin squares

L1 =

⎛
⎜⎜⎜⎝

1 4 5 2 3
3 1 2 4 5
2 5 1 3 4
5 3 4 1 2
4 2 3 5 1

⎞
⎟⎟⎟⎠ and L2 =

⎛
⎜⎜⎜⎝

1 2 4 3 5
3 4 1 5 2
2 3 5 4 1
5 1 3 2 4
4 5 2 1 3

⎞
⎟⎟⎟⎠

are orthogonal.

Solution: Simply looking at the 25 pairs (aij , bij), where aij is the entry in
row i and column j of L1 and bij is the entry in row i and column j of L2

establishes the fact. Note, for instance, that the pair (1, 1) comes from row i,
column 1; (1, 2) from row 4, column 4; (1, 3) from row 5, column 5; (1, 4) from
row 2, column 2; and (1, 5) from row 3, column 3.

Suppose we use the two Latin squares in Example 4 to schedule our 25
experiments. Looking at row i, column j tells us when to use chemical Ci and
temperature Tj . The entry from L1 tells the machine, and the entry from L2

tells the day of the week. Hence, since in row 2 and column 4, L1 has entry 4 and
L2 has entry 5, chemical C2 would be used with temperature T4 on machine 4
on day 5 (Friday). Since L1 and L2 are orthogonal, each (machine,day) pair
occurs exactly once, as of course does each (chemical,temperature) pair.

Of course, this is just an illustration when n = 5. But the same principles
clearly apply for every n. Thus, we obtain the following theorem.

Theorem 1 If there are two orthogonal Latin squares of order n, it is possi-
ble to schedule a series of n2 experiments with four different variable elements,
each of which has n possible states, such that any ordered pair of two states
appears exactly once with each ordered pair of the other two states.

The problem of determining for which n there are orthogonal Latin squares
of order n has a long history. There are, in fact, no two orthogonal Latin squares
of orders 2 or 6. For a long time it was conjectured that there were no orthogonal
Latin squares of order 2n if n is odd. But in fact such squares have been found
for 2n ≥ 10, where n is odd.
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Finite Projective Planes
In fact, it is sometimes possible to find n−1 mutually orthogonal Latin squares
of order n. The simplest such example consists of the orthogonal Latin squares

⎛
⎝ 1 2 3

2 3 1
3 1 2

⎞
⎠ and

⎛
⎝ 1 2 3

3 1 2
2 3 1

⎞
⎠

of order 3. With each set of n−1 mutually orthogonal Latin squares of order n,
it is possible to associate a geometric object called a finite projective plane.

Definition 5 A projective plane consists of two sets of elements called points
and lines (each line is a subset of points) such that each two points belong to
exactly one line and each two lines intersect in exactly one point.

The n − 1 mutually orthogonal Latin squares of order n, when they exist,
can be used to generate a projective plane of order n. We state the following
theorem without proof and then illustrate it with an example.

Theorem 2 A finite projective plane necessarily has the same number of
points, n + 1, on every line. (Such a plane is said to be of order n.) It also
has n+1 lines through every point, and a total of n2+n+1 points and n2+n+1
lines.

Example 5 Find the projective plane associated with n − 1 mutually or-
thogonal Latin squares L1, . . . , Ln−1 of order n, and illustrate it when n = 3.

Solution: Let the points be

{aij | 1 ≤ i, j ≤ n} ∪ R ∪ C ∪ {Pi | 1 ≤ i ≤ n − 1}.

The aij correspond to the entries in the matrix, R is for row, C is for column,
and the Pi correspond to the n − 1 Latin squares.

The lines are
1) a11, a12, . . . , a1n, R
...
n) an1, an2, . . . , ann, R
n+1) a11, a21, . . . , an1, C
...
2n) a1n, a2n, . . . , ann, C
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These correspond to the rows and columns of the matrices.
There are also lines joining the points whose entries in L1 are 1 and P1,

whose entries in L1 are 2 and P1, . . ., whose entries in L1 are n and P1. There
is a similar set of n lines for each Latin square (lines found using the kth Latin
square include the point Pk). Finally, there is the line containing R, C, P1, . . .,
Pn−1.

In particular, when n = 3 there are 13 points:
a11, a12, a13, a21, a22, a23, a31, a32, a33, R, C, P1, and P2.

The thirteen lines are
1) a11, a12, a13, R
2) a21, a22, a23, R
3) a31, a32, a33, R
4) a11, a21, a31, C
5) a12, a22, a32, C
6) a13, a23, a33, C

from L1:
7) a11, a23, a32, P1

8) a12, a21, a33, P1

9) a13, a22, a31, P1

from L2:
10) a11, a22, a33, P2

11) a12, a23, a31, P2

12) a13, a21, a32, P2

from the extra points:
13) R, C, P1, P2

Examination shows that every line contains four points, every point is on four
lines, every two lines intersect in a point, every two points determine a line.

The theory of finite projective planes is extremely rich. Both Ryser [5] and
Hall [3] have entire chapters on the subject. Ryser shows that there is always a
projective plane of order pk is p is a prime and k is a positive integer. He also
shows that if n ≡ 1 or 2 (mod 4) and some prime factor of n which is congruent
to 3 (mod 4) occurs to an odd power in the prime factorization of n, then there
is no projective plane of order n.

Block Designs
We now return to the situation of the Introduction, but we suppose that there
are only four temperatures that are possible, instead of five. Still, deleting the
last column of the Latin square gives a reasonable experimental design.
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Example 6 The matrix

⎛
⎜⎜⎜⎝

1 4 5 2
3 1 2 4
2 5 1 3
5 3 4 1
4 2 3 5

⎞
⎟⎟⎟⎠

is obtained from the Latin square of the Introduction by deleting the last col-
umn. This effectively removes one temperature. Still, each machine number
occurs four times, once in each column, and it appears in exactly four of the
five rows. So, while it is not complete, it is still balanced.

For the general situation, the machine numbers are called varieties, the
rows blocks, and the number of columns k.

Definition 6 A balanced incomplete block design (BIBD), also called a
(b, v, r, k, λ)-design, comprises a set of v varieties arranged in b blocks in such a
way that

i) each block has the same number k < v of varieties, with no variety
occurring twice in the same block;

ii) each variety occurs in exactly r blocks;
iii) each pair of varieties occurs together in exactly λ blocks.

For instance, the 5 × 4 matrix of Example 6 is a (5, 5, 4, 4, 3)-design.
Since each pair of varieties occurs together in the same number of blocks,

the design is called pairwise balanced. In general, if each set of t varieties occurs
together in the same number of blocks, the design is called a t-design. The
design in Example 6 is both a 4-design (every ordered 4-tuple appears once)
and a 3-design (every ordered triple appears twice). Note that the only thing
that prevents a Latin square from being a BIBD is its completeness (k = v).
Since the symmetry occurring in a Latin square is rarely present in actual
experiments, the construction of BIBDs is an important ability in designing
experiments.

Usually, BIBDs are specified by listing their blocks. For instance, the
(5, 5, 4, 4, 3)–design in Example 6 is

{{1, 2, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}}.

There are several relationships among the parameters b, v, r, k, and λ, as
stated in the following theorem.
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Theorem 3 In a (b, v, r, k, λ)-design,
i) bk = vr

ii) λ(v − 1) = r(k − 1)
iii) r > λ

iv) b ≥ v.

Proof: Only the first three parts will be proved; the fourth is beyond the scope
of the book; see [5] for a proof.

i) Since each of the b blocks has k varieties, bk counts the total number
of varieties; but since each variety is in r blocks, vr also counts this. Hence
bk = vr.

ii) Since each pair of varieties occurs in exactly λ blocks, the total number
of varieties (other than v1) occurring in the blocks containing v1 is λ(v − 1).
But since v1 occurs in exactly r blocks, that number is also r(k − 1).

iii) Since k < v, we have k − 1 < v − 1. But, r(k − 1) = λ(v − 1), so we
must have r > λ.

As noted in the discussion preceding Theorem 3, if every set of t varieties
occurs in the same number of blocks, λt, the design is called a t-design. So, of
course, every BIBD is a 1-design (with λ1 = r) and a 2-design (with λ2 = λ),
from Definition 6. Usually, a design is called a t-design for the largest t possible
for that design. In fact, a t-design is often referred to as a t-(b, v, k, λt) design,
and the r and k of Definition 6 are not given. The following theorem shows
that they can be determined from t, b, v, k, and λt.

Theorem 4 If 0 < s < t, and D is a t–(b, v, k, λt) design, then D is also an
s–(b, v, k, λs) design, where λs can be determined from λt.

Proof: We need only show D is a (t − 1)-design. To do this, let S be a fixed
set of t − 1 varieties, and suppose S is a subset of λt−1 blocks of D. Each
block containing S also contains k − (t − 1) other varieties. Any one of these
together with S forms a t-set containing S. Since S is in λt−1 blocks, there are
λt−1(k − t + 1) such t-sets altogether.

But we can count this number of t-sets in another way. The design D
contains v − (t − 1) varieties other than the ones in S. Each one of these
together with S forms a t-set. By hypothesis, each such t-set is in λt blocks.
Thus, the number of t-sets is also λt(v − t + 1).

Hence λt−1(k − t + 1) = λt(v − t + 1), and so λt−1 is independent of the
choice of S.

Corollary 1 Every t-design is a BIBD with r = λ1, λ = λ2.
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For instance, the BIBD obtained at the beginning of this section is a 4-design
with b = 5, v = 5, k = 4, λ4 = 1. From the formula of the proof,

λ3(4 − 4 + 1) = λ4(5 − 4 + 1), so λ3 = 2

λ2(4 − 3 + 1) = λ3(5 − 3 + 1), so λ2 = 3

λ1(4 − 2 + 1) = λ3(5 − 2 + 1), so λ1 = 4

Thus, this 4-design is indeed a (5, 5, 4, 4, 3)-design.
Of course, any Latin square of order n can be used to obtain an (n − 1)-

design just by deleting one column.
Some other interesting designs that occur are the (n2 + n + 1, n2 + n +

1, n + 1, n + 1, 1) designs obtained from the projective plane of order n by
making the varieties the points and making the blocks the lines. Since every
line contains q+1 points, every point is on q+1 lines, and two points determine
a unique line, this is indeed a BIBD.

Steiner Triple Systems
Another often-studied class of BIBDs is the class with k = 3 and λ = 1.

Definition 7 A (b, v, r, 3, 1)-design is called a Steiner triple system.

While these are named for Jacob Steiner, they first arose in a problem
called Kirkman’s Schoolgirl Problem (1847).

Example 7 Suppose that 15 girls go for a walk in groups of three. They do
this each of the seven days of the week. Can they choose their walking partners
so that each girl walks with each other girl exactly once in a week?

Solution: This amounts to finding a Steiner triple system with v = 15 (girls),
b = 35 (there are five groups of girls each day for seven days), and r = 7 (each
girl walks on seven days). Further, the 35 blocks must be divided into seven
groups of five so that each girl appears exactly once in each group.

Number the girls 0, 1, 2, . . . , 14. Let the first group be

{14, 1, 2}, {3, 5, 9}, {11, 4, 0}, {7, 6, 12}, {13, 8, 10}.

Then let group i (1 ≤ i ≤ 6) be obtained as follows:

a) 14 remains in the same place,
b) if 0 ≤ k ≤ 13, k is replaced by (k + 2i) mod 14.
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It is left as an exercise to show that the seven groups obtained actually give 35
different blocks of the type desired.

Steiner conjectured in 1853 that Steiner triple systems exist exactly when
v ≥ 3 and v ≡ 1 or 3 (mod 6). This has proven to be the case. In the case
where v = 6n + 3, we have b = (2n + 1)(3n + 1). (See Exercise 9.)

If the b triples can be partitioned into 3n+1 components with each variety
appearing exactly once in each component, the system is called a Kirkman triple
system. Notice that the solution to the Kirkman schoolgirl problem has n = 2.
For more results about Steiner triple systems, see [3] or [5].
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2. J. Dénes and A. D. Keedwell, Latin Squares and their Applications, Aca-
demic Press, Burlington, MA, 1991.

3. M. Hall, Combinatorial Theory , Second Edition, John Wiley & Sons, Hobo-
ken, N.J., 1998.

4. J. Riordan, An Introduction to Combinatorial Analysis, Dover Publica-
tions, Mineola, N.Y., 2002.

5. H. Ryser, Combinatorial Mathematics, Carus Monograph #14, Mathemat-
ical Association of America, 1963.

Exercises

1. Show that

⎛
⎜⎝

1 2 3 4
2 1 4 3
3 4 2 1
4 3 1 2

⎞
⎟⎠ and

⎛
⎜⎝

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

⎞
⎟⎠

are equivalent.
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2. Find a reduced Latin square equivalent to

⎛
⎜⎜⎜⎝

1 4 5 2 3
3 1 2 4 5
2 5 1 3 4
5 3 4 1 2
4 2 3 5 1

⎞
⎟⎟⎟⎠

�3. Show that “equivalent” is an equivalence relation on the set of n× n Latin
squares.

4. Find a Latin square orthogonal to

⎛
⎜⎝

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

⎞
⎟⎠

�5. a) Find a set of three mutually orthogonal Latin squares of order 4.
b) How many points are there in a finite projective plane of order 4?
c) How many points are on a typical line?
d) List all the points and lines.

6. Suppose a BIBD has 69 blocks, 24 varieties, and 8 varieties in a block.
What are all the parameters?

7. Delete a column from the Latin square of Exercise 4 to obtain a 3-design.
What are its parameters?

8. Construct a BIBD from the finite projective plane in the text. What are
its parameters?

9. Suppose a Steiner triple system has 6n + 3 varieties. Show that r = 3n + 1
and b = (2n + 1)(3n + 1).

10. a) Find the other six groups of the solution to the Kirkman schoolgirl
problem.

b) With whom does schoolgirl 5 walk on Thursday (assume Sunday is
day 0).

c) When does schoolgirl 14 walk with schoolgirl 0? Who is their com-
panion?

�11. Alice, Betty, Carol, Donna, Evelyn, Fran, Georgia, Henrietta, and Isabel
form a swimming group. They plan to swim once a week, with one group of
three swimming each of Monday, Wednesday, and Friday. Over the course of
four weeks, each woman wants to swim with each other woman. Construct
a schedule for them.
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�12. There is a unique Steiner triple system with v = 7.
a) What are its parameters as a BIBD?
b) Construct it.
c) Use it to construct a finite projective plane. What order is it?

Computer Projects

1. Write a computer program to determine whether or not two Latin squares
are orthogonal.

2. Write a computer program to determine r and λ in a BIBD if b, v, and k
are given. The output should list all of b, v, k, r, λ and should say “this is
an impossible configuration” if r or λ turns out not to be an integer.


