BZU PAGES: Find Presentations, Reports, Student's Assignments and Daily Discussion; Bahauddin Zakariya University Multan Right Header

Register FAQ Community Calendar New Posts Navbar Right Corner
HOME BZU Mail Box Online Games Radio and TV Cricket All Albums
Go Back   BZU PAGES: Find Presentations, Reports, Student's Assignments and Daily Discussion; Bahauddin Zakariya University Multan > Institute of Computing > Bachelor of Science in Telecom System > BsTS 1st Semester > Electrical Circuits


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 19-03-2011, 08:09 PM
bonfire's Avatar
M.Arsalan Qureshi

 
Join Date: Oct 2008
Location: Garden Town, Multan Cantt
Posts: 616
Program / Discipline: BSTS
Class Roll Number: 09-31
bonfire has a reputation beyond reputebonfire has a reputation beyond reputebonfire has a reputation beyond reputebonfire has a reputation beyond reputebonfire has a reputation beyond reputebonfire has a reputation beyond reputebonfire has a reputation beyond reputebonfire has a reputation beyond reputebonfire has a reputation beyond reputebonfire has a reputation beyond reputebonfire has a reputation beyond repute
Default Chapter 12: Power Amplifiers

Chapter 12: Power Amplifiers

An amplifier receives a signal from some pickup transducer or other input source and provides a larger version of the signal to some output device or to another amplifier stage. An input transducer signal is generally small (a few millivolts from a cassette or CD input, or a few microvolts from an antenna) and needs to be amplified sufficiently to operate an output device (speaker or other power-handling device). In small-signal amplifiers, the main factors are usually amplification linearity and magnitude of gain. Since signal voltage and current are small in a small-signal amplifier, the amount of power-handling capacity and power efficiency are of little concern. A voltage amplifier provides voltage amplification primarily to increase the voltage of the input signal. Large-signal or power amplifiers, on the other hand, primarily provide sufficient power to an output load to drive a speaker or other power device, typically a few watts to tens of watts. In Chapter 12, we concentrate on amplifier circuits used to handle large-voltage signals at moderate to high current levels. The main features of a large-signal amplifier are the circuit's power efficiency, the maximum amount of power that the circuit is capable of handling, and the impedance matching to the output device.
One method used to categorize amplifiers is by class. Basically, amplifier classes represent the amount the output signal varies over one cycle of operation for a full cycle of input signal. A brief description of amplifier classes is provided next.
Class A: The output signal varies for a full 360° of the cycle. Figure 12.1a shows that this requires the Q-point to be biased at a level so that at least half the signal swing of the output may vary up and down without going to a high enough voltage to be limited by the supply voltage level or too low to approach the lower supply level, or 0 V in this description.
Class B: A class B circuit provides an output signal varying over one-half the input signal cycle, or for 180° of signal, as shown in Fig. 12.1b. The dc bias point for class B is therefore at 0 V, with the output then varying from this bias point for a half-cycle. Obviously, the output is not a faithful reproduction of the input if only one half-cycle is present. Two class B operations—one to provide output on the positive-output half-cycle and another to provide operation on the negative-output half-cycle—are necessary. The combined half-cycles then provide an output for a full 360° of operation. This type of connection is referred to as push–pull operation, which is discussed later in this chapter. Note that class B operation by itself creates a very distorted output signal since reproduction of the input takes place for only 180° of the output signal swing.

Figure 12.1
Amplifier operating classes Class AB: An amplifier may be biased at a dc level above the zero-base-current level of class B and above one-half the supply voltage level of class A; this bias condition is class AB. Class AB operation still requires a push–pull connection to achieve a full output cycle, but the dc bias level is usually closer to the zero-base-current level for better power efficiency, as described shortly. For class AB operation, the output signal swing occurs between 180° and 360° and is neither class A nor class B operation.
Class C: The output of a class C amplifier is biased for operation at less than 180° of the cycle and will operate only with a tuned (resonant) circuit, which provides a full cycle of operation for the tuned or resonant frequency. This operating class is therefore used in special areas of tuned circuits, such as radio or communications.
Class D: This operating class is a form of amplifier operation using pulse (digital) signals, which are on for a short interval and off for a longer interval. Using digital techniques makes it possible to obtain a signal that varies over the full cycle (using sample-and-hold circuitry) to recreate the output from many pieces of input signal. The major advantage of class D operation is that the amplifier is "on" (using power) only for short intervals and the overall efficiency can practically be very high, as described next.



Amplifier Efficiency
The power efficiency of an amplifier, defined as the ratio of power output to power input, improves (gets higher) going from class A to class D. In general terms, we see that a class A amplifier, with dc bias at one-half the supply voltage level, uses a good amount of power to maintain bias, even with no input signal applied. This results in very poor efficiency, especially with small input signals, when very little ac power is delivered to the load. In fact, the maximum efficiency of a class A circuit, occurring for the largest output voltage and current swing, is only 25% with a direct or series-fed load connection and 50% with a transformer connection to the load. Class B operation, with no dc bias power for no input signal, can be shown to provide a maximum efficiency that reaches 78.5%. Class D operation can achieve power efficiency over 90% and provides the most efficient operation of all the operating classes. Since class AB falls between class A and class B in bias, it also falls between their efficiency ratings—between 25% (or 50%) and 78.5%. Table 12.1 summarizes the operation of the various amplifier classes. This table provides a relative comparison of the output cycle operation and power efficiency for the various class types. In class B operation, a push–pull connection is obtained using either a transformer coupling or by using complementary (or quasi-complementary) operation with npn and pnp transistors to provide operation on opposite-polarity cycles. Although transformer operation can provide opposite-cycle signals, the transformer itself is quite large in many applications. A transformerless circuit using complementary transistors provides the same operation in a much smaller package. Circuits and examples are provided later in this chapter.




__________________

Reply With Quote
Reply

Tags
amplifiers, chapter, power


Currently Active Users Viewing This Thread: 1 (0 members and 1 guests)
 

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Chapter 15: Power Supplies (Voltage Regulators) bonfire Electrical Circuits 0 19-03-2011 08:11 PM
Chapter 10: Operational Amplifiers bonfire Electrical Circuits 0 19-03-2011 08:07 PM
Chapter 8: FET Amplifiers bonfire Electrical Circuits 0 19-03-2011 08:05 PM
Cut power costs with DC power .BZU. Science & Technology 0 15-01-2009 03:35 AM

Best view in Firefox
Almuslimeen.info | BZU Multan | Dedicated server hosting
Note: All trademarks and copyrights held by respective owners. We will take action against any copyright violation if it is proved to us.

All times are GMT +5. The time now is 04:00 PM.
Powered by vBulletin® Version 3.8.2
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.