UML Use Cases & Activity Diagrams

CMPSCI 320
Fall 2001

What is a use case?

In this class, your requirements documents will consist mostly of use cases. A use case is a description of a typical interaction between a user and a computer system. Jacobson, who popularized the use of use cases, says each should describe “a behaviorally related sequence of transactions in a dialogue with the system".

Perhaps some examples will help. Use-cases for a word processor might include building an index or inserting a picture. In this way they correspond to menu commands. They can be quite large (building an index) or quite small (making some text bold). Often they might not involve a single command. A use case might be to ensure that the text in a document is consistently formatted -- there is no command for this, but this is the use case that drives the need for style sheets.

This latter example introduces many of the difficulties of finding good use cases. The art is to identify the users' goals, not the system’s functions. One way of doing this is to treat a user's business task as a use case, and to ask how the computer system can support it. In its simplest usage, you capture a use case by talking to your typical users and discussing the various things they might want to do with the system. Take each discrete description. You can then elaborate each into a use case.

We have to note that system interaction and user goals are two different kinds of use cases. With system interactions, you can say that the use cases would include the likes of “define a style”, ”change a style”, and “move a style from the one document to another.” However, all these use cases reflect things the user is doing with the system rather than the real goals the user is trying to achieve. The real user goals might be described with terms like “ensure consistent formatting for a document” and “make one document’s format the same as another.” The dichotomy between user goal and system interaction is not present in all situations. For example, the process of indexing a document is pretty much the same whether you think of it as a user goal or a system interaction. However, where user goals and system interactions do differ, it is important to be aware of the difference.

In this class, your use cases will be described with:

· Use case diagrams, which describe a set of use cases and the actors involved in them.

· A use case textual description for each of the use cases.

· An activity diagram for each of the use cases, which will formalize the functional requirements for the use case.

Use case diagrams

Use case diagrams provide a way of describing the external view of the system and its interactions with the outside world (Figure 1). In this way it resembles the context diagram of traditional approaches. In this representation the outside world is represented as actors. And also in addition to the links among actors and use cases, there are two other types of links called uses and extends, they represent the uses and extends relationships among use cases. We’ll specify important things related to actors and the [image: image2.png]Set Limits

Actr/*% /© «—— Use Case

«uses»

Cuses» Valuation

Trading Manager
Analyze Risk
\ Price Deal \

Trad
/

v
© «extends» Capture Deal
Salesman

Limits Exceeded

difference between uses and extends in the following paragraphs.

[image: image3.png])- -

inco
feorrect]
! faccepted)
rej 1l
<

Irejected]

Actors

Actors are roles played by various people, or other external systems that need some information from current system. The emphasis on roles is important: one person may play many roles, and a role may have many people playing it. Use-cases are then typical interactions that the actor has with the system.

There are three actors in Figure 1:Trading Manager, Trader, and Salesperson. In practice, actors are very useful when trying to come up with the use cases. Faced with a big system, it can often be difficult to come up with a list of use cases. It is easier in those situations to arrive at the list of actors first, and then try to work out the use cases for each actor.

To decide what’s the exact subject (i.e. actors) of interactions with external systems is difficult. You should show system actors only when they are the ones who need the use case. Use cases are all about externally-required functionality. It the Accounting System needs a file, that is a requirement that needs to be satisfied. So when working with actors and use cases, don’t worry too much about what the exact relationship are among them. What’s you are really after is the use cases; the actors are just a way to get there.

One situation in which the actors do live on, however, is in configuring the system for different kinds of users. If your system has use cases that correspond with high-level user functions, you can use the actor/use case links to profile individual users. Each user would have an associated list of actor names, which you would use to determine which use cases that user can perform. Another good reason to track the actors involves needing to know who wants which use case. This can be important when you are assessing competing needs. Understanding the actors may help you negotiate among competing development demands.

A good source for identifying use cases is external events. Think about all the events from the outside world to which you want to react. A given event may cause a system reaction that does not involve users, or it may cause a reaction primarily from the users. Identifying the events that you need to react to will help you identify the use cases.

Uses and Extends Edges

You use the <extends> relationship when you have one use case that is similar to another use case but does a bit more. In our example, the basic use case is Capture Deal. This is the case in which all goes smoothly. There are things that can upset the smooth capture of a deal, however. One of these things is when some limit is exceeded—for instance, the maximum amount the reading organization has established for a particular customer. Here we could put the normal behavior in one use case and the unusual behavior somewhere else.

The <uses> relationship occurs when you have a chunk of behavior that is similar across more than one use case and you don’t want to keep copying the description of that behavior. For instance, both Analyze Risk and Price Deal require you to value the deal. Describing deal valuation involves a fair chunk of writing, you can spun off a separate Value Deal use for this situation and referred to it from the original use cases.

Both of uses and extends imply factoring out common behavior from several use cases to a single case that is used, or extended by, several other use cases. However, there is sharp difference between them. You can apply the following rules:

· Use extends when you are describing a variation on normal behavior.

· Use uses when you are repeating yourself in two or more separate use cases and you want to avoid repetition.

Textual Descriptions

Each of your use cases should be described using English text in a structured format with the following sub-sections:

· Introduction

· Functional Description

· Expected Changes

· Performance Requirements

· Precision Requirements

· Safety Requirements

· Robustness Requirements

· Environment Requirements

Each of these sub-sections should exist for each use-case. If there are no specific requirements for a particular sub-section, you can leave the sub-section blank.

Activity Diagrams

[image: image4.wmf]Receive

Supply

Dispatch

Order

[all outstanding

order items filled]

for each chosen

order item

*

Choose

Outstanding

Order Items

Assign

Goods to

Order

Add

Remainder

to Stock

[stock assigned to

all line items and

payment authorized]

Receive

Supply

Dispatch

Order

[all outstanding

order items filled]

for each chosen

order item

*

Choose

Outstanding

Order Items

Assign

Goods to

Order

Add

Remainder

to Stock

[stock assigned to

all line items and

payment authorized]

Activity diagrams are one of several ways you can model the dynamics of a system. The activity diagram focuses on activities, chunks of process that may or may not correspond to methods or member functions, and the sequencing of these activities. In this sense it is like a flow chart. It differs, however, from a flow chart in that it explicitly supports parallel activities and their synchronization. You can show sequential and/or concurrent steps of a process, model business workflows, model the flow control of an operation, or the flow of an object as it passes though different states at different points in a process.

A Typical Activity Diagram

Figure 2 shows the business logic for someone trying to enroll for the first time at the university.

· The filled circle represents the starting point of the activity diagram, effectively a placeholder, and the filled circle with a border represents the ending point.

· The rounded rectangles represent processes or activities that are performed. In this diagram, the activities map reasonably closely to use cases, although you will notice the "Enroll in Seminar(s)" activity would be the invocation of the "Enroll in Seminar" use case several times. Activities can also be much more fine-grained, particularly if you had chosen to document the logic of a method instead of a high-level business process.

· The diamonds represent decision points, although, in this example, the decision point had only two possible outcomes; it could just as easily have had many more.

· The arrows represent transitions between activities, modeling the flow order between the various activities.

· The text on the arrows represent conditions that must be fulfilled to proceed along the transition and are always described using the format "[condition]".

· The thick bars represent the start and end of potentially parallel processes; after you are successfully enrolled in the university, you must attend the mandatory overview presentation, and also enroll in at least one seminar and pay some portion of your tuition.

Activity Diagram for Use Cases

Consider a use case for order processing, with a functional description like this:

[image: image1.wmf]Receive

Order

Authorize

Payment

Cancel

Order

Check

Line Item

Assign to

Order

Reorder

Item

Dispatch

Order

[stock assigned to

all line items and

payment authorized]

for each line

item on order

*

Multiple Trigger

Synchronization

Condition

[need to reorder]

[succeeded]

[failed]

[in stock]

Receive

Order

Authorize

Payment

Cancel

Order

Check

Line Item

Assign to

Order

Reorder

Item

Dispatch

Order

[stock assigned to

all line items and

payment authorized]

for each line

item on order

*

Multiple Trigger

Synchronization

Condition

[need to reorder]

[succeeded]

[failed]

[in stock]

Figure 3. Receiving an Order

When we receive an order, we check line item on the order to see if we have the goods in stock. If we do, we assign the goods to the order. If this assignment sends the quantity of those goods in stock below the reorder level, we reorder the goods. While we are doing this, we check to see if the payment is ok. If the payment is OK and we have the goods in stock, we dispatch the order, If the payment is Ok but we don’t have the goods, we leave the order waiting. If the payment isn’t OK, we cancel the order.

Figure 3 shows an activity diagram for this use case. We’ll pay special attention to the parallel aspect of this example. Take a look at the incoming trigger associated with the Check Line Item activity. It is marked with a *. This is a multiplicity marker to show that when we receive an order, we have to carry out the Check Line Item activity for each line item on the order. This means that the Receive Order activity is followed by one invocation of the Authorize Payment activity and multiple invocations of the Check Line Item activity. All of these invocations occur in parallel. Thus, you can get parallel activities through multiple transitions coming out of a synchronization bar(the thick bar in the diagram); you can also get parallel activities when the same activity is triggered trough a multiple trigger. Whenever you have a multiple trigger, you should indicate on the diagram what the basis of the trigger is, as in the case with “ for each item line item on order”.

When you see a multiple trigger, you usually see a synchronization bar, farther down in the diagram, that brings the parallel threads together. In this case, we see this bar before the Dispatch Order activity. The synchronization bar has a condition applied to it. Each time a trigger comes to the synchronization bar, the condition is tested. If the condition is true, the outbound trigger occurs. Unlabeled synchronization bars work in the same way. The lack of a condition means the default condition for synchronization bars is used, that is, all coming triggers have occurred.

An activity diagram need not have a defined end point. The end point of an activity diagram is the point at which all triggered activities have been run and there are no more left to do. Figure 3 also has a dead end: the Recorder Item activity. After this activity, nothing more happens. Dead ends are fine on a non-terminating activity diagram like this. But sometimes they are not very obvious. Look at the Check Line Item activity. It has only one outbound trigger, which has a condition. What happens if the given line item isn’t in stock? Nothing- the thread just stops there.

In our example, there can be another use case.

When a supply delivery comes in, we look at the outstanding orders and decide which ones we can fill from this incoming supply. We then assign each of these to its appropriate orders. Doing this may release those orders for dispatching. We put the remaining goods into stock.

Figure 4 is an activity diagram that represents this use case. It shows how the order can wait to be dispatched until we get another delivery.

Combining and decomposing an activity

In the above example, we cannot dispatch an order until we get an incoming delivery that replenishes the stock. Since each of the two use cases shows part of the whole picture, we’d like to draw a combined diagram of them. Note that both of the two use cases have the same activity Dispatch Order, we can combine them at that point. Such a diagram can also show us how different use cases interact with each other. Moreover, we see that the resulting diagram must have multiple start points. That will be perfectly fine as the activity diagram represents how the business reacts to multiple external events. This ability of activity diagrams to show behavior that spans multiple use cases is particularly useful. Use cases give us slices of information about a domain viewed from the outside; when we look at the internal picture, we need to see the whole.

An activity can be decomposed into further description. This description can be text, code, or another activity diagram. When you draw an activity diagram as decomposition of a higher-level activity, you must provide a single start point but as many end points as there are outgoing triggers within the higher-level activity. This allows the subsidiary diagram to return a value that determines later triggering. All the other things are the same as you draw a normal activity diagram. For example, we can draw another activity diagram to specify the activity Authorize Payment. That diagram returns whether “succeeded” or “failed”, and finally end in those two end points.

Reference:

UML Distilled, Applying the Standard Object Modeling Language, Martin Fowler with Kendall Scott

�

Figure 1. Some of the use cases for a financial trading system

� INCLUDEPICTURE "http://www-106.ibm.com/developerworks/components/library/tip-whenuml/figure1.gif" * MERGEFORMATINET ���

Figure 2. A UML activity diagram for enrolling in school for the first time

�

Figure 4. Receiving Supply

