

© 2007 Cisco Systems, Inc. All rights reserved.

Reviewing Enterprise Routing Protocols

Designing IP Addressing and Selecting Routing Protocols

© 2007 Cisco Systems, Inc. All rights reserved

Distance Vector and Link-State Comparison

Distance vector protocol characteristics:

- Slow convergence
- Easy implementation and maintenance
- Limited scalability

Link-state protocol characteristics:

- Fast convergence
- Good scalability
- Less routing traffic overhead
- More knowledge needed for implementation and maintenance

© 2007 Cisco Systems, Inc. All rights reserved

Example: Distance Vector Routing

Routing updates are periodic:

- Include whole routing tables
- Use gratuitous updates (except RIPv2)

© 2007 Cisco Systems, Inc. All rights reserved.

Example: Link-State Routing

Triggered updates:

- Include data on link states of changing links
- Use multicast propagation

© 2007 Cisco Systems, Inc. All rights reserved.

DESGN v2.0—5-4

Interior vs. Exterior Routing Protocols

Interior Gateway Protocols (IGPs):

- Routing inside autonomous systems
- Fast convergence and easy configuration
- Low administrator influence on routing decisions

Exterior gateway protocols (EGPs):

- Routing between autonomous systems
- Slow convergence and more complex configuration
- High administrator influence on routing decisions

© 2007 Cisco Systems, Inc. All rights reserved

Example: Interior vs. Exterior Routing Protocols

© 2007 Cisco Systems, Inc. All rights reserved

Hierarchical vs. Flat Routing Protocols

- Flat routing protocols propagate all routing information throughout the network:
 - Classful routing protocols
 - Not appropriate for large networks
 - RIPv1, IGRP, RIPv2 (classless)
- Hierarchical routing protocols divide large networks into smaller areas:
 - Classless routing protocols
 - Limited route propagation between areas
 - EIGRP, OSPF, IS-IS

© 2007 Cisco Systems, Inc. All rights reserved.

Example: Flat and Hierarchical Networks

Comparing flat and hierarchical networks:

- Hierarchical structure means less routing traffic overhead.
- Summarization is the key.

© 2007 Cisco Systems, Inc. All rights reserved.

Routing Protocol Convergence

- A converged network is a stable network with all needed routing information.
- Network convergence takes place:
 - Initially on network startup
 - On topological changes
- Enterprise routing protocols should have short convergence times.

© 2007 Cisco Systems, Inc. All rights reserved

Routing Protocol Convergence Comparison

Protocol	Convergence Time to Router E
RIP	Holddown + 1 or 2 update intervals
EIGRP	Matter of seconds
OSPF	Matter of seconds

© 2007 Cisco Systems, Inc. All rights reserved.

Enhanced IGRP (EIGRP)

- Advanced distance vector protocol based on IGRP with some link-state protocol features
- Supports VLSM

© 2007 Cisco Systems, Inc. All rights reserved.

EIGRP Characteristics

EIGRP Characteristics	Implemented By	
Fast convergence	Diffusing Update Algorithm (DUAL)	
Improved scalability	Manual summarization, fast convergence	
Use of VLSM	Subnet mask in updates	
Reduced bandwidth usage	No periodic updates	
Multiple network layer protocol support	IPv4, IPv6 (Protocol Dependent Modules for IPX, AppleTalk)	

© 2007 Cisco Systems, Inc. All rights reserved.

Open Shortest Path First (OSPF)

- Developed in 1988 by IETF, version 2 is described in RFC 2328.
- OSPF was devised for use in large, scalable networks where RIP failed:
 - Improved speed of convergence
 - Network reachability (no hop-count limitations)
 - Support for VLSM
 - Improved path calculation

© 2007 Cisco Systems, Inc. All rights reserved.

Example: OSPF Multiarea Network

© 2007 Cisco Systems, Inc. All rights reserved

OSPF Characteristics

OSPF Characteristics	Implemented By	
Fast convergence	Link-state updates (triggered), SPF calculation	
Very good scalability	Multiple-area design	
Use of VLSM	Subnet mask in updates	
Reduced bandwidth usage	No periodic updates	

© 2007 Cisco Systems, Inc. All rights reserved.

Integrated IS-IS

- Link-state protocol
 - Supports IPv4, IPv6, and OSI CLNP
 - Support for VLSM
 - Based on Level 2 backbone to which Level 1 areas are attached
- Typically deployed in service provider environments, with enterprise network administrators having limited knowledge of IS-IS

© 2007 Cisco Systems, Inc. All rights reserved.

Border Gateway Protocol (BGP)

- BGP is an exterior gateway protocol (EGP) used in Internet routing.
- BGP is a path vector protocol with enhancements:
 - Suited for strategic routing policies used between autonomous systems
 - Allows administrators to adjust parameters to influence routing

© 2007 Cisco Systems, Inc. All rights reserved.

BGP Network Implementation

BGP is primarily used for inter-AS system routing.

© 2007 Cisco Systems, Inc. All rights reserved.

Internal BGP

- BGP can run between routers within one autonomous system.
- IBGP neighbors need not be directly connected (use static routes or an IGP to convey reachability information).
- Other IBGP uses:
 - Intra-autonomous system policy implementations
 - QoS Policy Propagation on BGP (QPPB)
 - MPLS VPNs (using multiprotocol IBGP)

© 2007 Cisco Systems, Inc. All rights reserved

Recommended Enterprise Routing Protocol Comparison

Enterprise Characteristics	EIGRP	OSPF
Fast convergence	Yes	Yes
Very good scalability	Yes	Yes
Use of VLSM	Yes	Yes
Multiple network layer protocol support	Yes	No
Mixed vendor devices	No	Yes

© 2007 Cisco Systems, Inc. All rights reserved

Summary

- Protocols with hierarchical and link-state attributes support the fastest network convergence.
- EIGRP and OSPF are the recommend IGPs for the enterprise.
 - EIGRP is a Cisco proprietary protocol for routing IPv4, IPv6, IPX, and AppleTalk traffic.
 - OSPF is a standardized protocol for routing IPv4, developed to replace RIP in larger, more diverse media networks. It also can support IPv6.
 - BGP is a representative EGP. It is primarily used to interconnect autonomous systems or to connect enterprises to an ISP.

© 2007 Cisco Systems, Inc. All rights reserved.