
5.5 Convergence Concepts

This section treats the somewhat fanciful idea of allowing the sample size to approach infinity

and investigates the behavior of certain sample quantities as this happens. We are mainly

concerned with three types of convergence, and we treat them in varying amounts of detail.

In particular, we want to look at the behavior of X̄n, the mean of n observations, as n →∞.

5.5.1 Convergence in Probability

Definition 5.5.1 A sequence of random variables, X1, X2, . . ., converges in probability to a

random variable X if, for every ε > 0,

lim
n→∞

P (|Xn −X| ≥ ε) = 0

or equivalently,

lim
n→∞

P (|Xn −X| < ε) = 1.

The X1, X2, . . . in Definition 5.5.1 (and the other definitions in this section) are typically

not independent and identically distributed random variables, as in a random sample. The

distribution of Xn changes as the subscript changes, and the convergence concepts discussed

in this section describes different ways in which the distribution of Xn converges to some

limiting distribution as the subscript becomes large.

Theorem 5.5.2 (Weak law of large numbers)

Let X1, X2, . . . be iid random variable with EXi = µ and VarXi = σ2 < ∞. Define X̄n =

(1/n)
∑n

i=1 Xi. Then, for every ε > 0,

lim
n→∞

P (|X̄n − µ| < ε) = 1;

that is, X̄n converges in probability to µ.

Proof: We have, for every ε > 0,

P (|X̄n − µ| ≥ ε) = P ((X̄n − µ)2 ≥ ε)

≤ E(X̄n − µ)2

ε2
=

VarX̄

ε2
=

σ2

nε2
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Hence, P (|X̄n − µ| < ε) = 1− P (|X̄n − µ| ≥ ε) = 1− σ2

nε2
→ 1, as n →∞. ¤

The weak law of large numbers (WLLN) quite elegantly states that under general conditions,

the sample mean approaches the population mean as n →∞.

Example (Consistency of S2)

Suppose we have a sequence X1, X2, . . . of iid random variables with EXi = µ and VarXi =

σ2 < ∞. If we define

S2
n =

1

n− 1

n∑
i=1

(Xi − X̄n)2,

using Chebychev’s Inequality, we have

P (|S2 − σ2| ≥ ε) ≤ E(S2
n − σ2)2

ε2
=

VarS2
n

ε2
,

and thus, a sufficient condition that S2
n converges in probability to σ2 is that VarS2

n → 0 as

n →∞.

Theorem 5.5.4

Suppose that X1, X2, . . . converges in probability to a random variable X and that h is a

continuous function. Then h(X1), h(X2), . . . converges in probability to h(X).

Proof: If h is continuous, given ε > 0 there exists δ > 0 such that |h(xn) − h(x)| < ε for

|xn − x| < δ. Since X1, X2, . . . converges in probability to the random variable X, then

lim
n→∞

P (|Xn −X| < δ) = 1

Thus,

lim
n→∞

P (|h(Xn)− h(X)| < ε) = 1.

¤

Example (Consistency of S)

If S2
n is a consistent estimator of σ2, then by Theorem 5.5.4, the sample standard deviation

Sn =
√

S2
n is a consistent estimator of σ.
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5.5.2 Almost sure convergence

A type of convergence that is stronger than convergence in probability is almost sure con-

vergence. This type of convergence is similar to pointwise convergence of a sequence of

functions, except that the convergence need not occur on a set with probability 0 (hence the

“almost” sure).

Example (Almost sure convergence)

Let the sample space S be the closed interval [0, 1] with the uniform probability distribution.

Define random variables Xn(s) = s + sn and X(s) = s. For every s ∈ [0, 1), sn → 0 as n →
and Xn(s) → s = X(s). However, Xn(1) = 2 for every n so Xn(1) does not converge to

1 = X(1). But since the convergence occurs on the set [0, 1) and P ([0, 1)) = 1, Xn converges

to X almost surely.

Example (Convergence in probability, not almost surely)

Let the sample space be [0, 1] with the uniform probability distribution. Define the sequence

X1, X2, . . . as follows:

X1(s) = s + I[0,1](s), X2(s) = s + I[0, 1
2
](s), X3(s) = s + I[ 1

2
,1](s),

X4(s) = s + I[0, 1
3
](s), X5(s) = s + I[ 1

3
, 2
3
](s), X6(s) = s + I[ 2

3
,1](s),

· · ·

Let X(s) = s. As n → ∞, P (|Xn − X| ≥ ε) is equal to the probability of an interval of

s values whose length is going to 0. However, Xn does not converge to X almost surely.

Indeed, there is no value of s ∈ S for which Xn(s) → s = X(s). For every s, the value

Xn(s) alternates between the values s and s + 1 infinitely often. For example, if s = 3
8
,

X1(s) = 11/8, X2(s) = 11/8, X3(s) = 3/8, X4(s) = 3/8, X5(s) = 11/8, X6(s) = 3/8, etc. No

pointwise convergence occurs for this sequence.

Theorem 5.5.9 (Strong law of large numbers)

Let X1, X2, . . . be iid random variable with EXi = µ and VarXi = σ2 < ∞. Define X̄n =

(1/n)
∑n

i=1 Xi. Then, for every ε > 0,

P ( lim
n→∞

|X̄n − µ| < ε) = 1;
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that is, X̄n converges almost surely to µ.

For both the weak and strong law of large numbers we had the assumption of a finite variance.

In fact, both the weak and strong laws hold without this assumption. The only moment

condition needed is that E|Xi| < ∞.

5.5.3 Convergence in Distribution

Definition 5.5.10

A sequence of random variables, X1, X2, . . ., converges in distribution to a random variable

X if

lim
n→∞

FXn(x) = FX(x)

at all points x where FX(x) is continuous.

Example (Maximum of uniforms)

If X1, X2, . . . are iid uniform(0,1) and X(n) = max1≤i≤n Xi, let us examine if X(n) converges

in distribution.

As n →∞, we have for any ε > 0,

P (|Xn − 1| ≥ ε) = P (X(n) ≤ 1− ε)

= P (Xi ≤ 1− ε, i = 1, . . . , n) = (1− ε)n,

which goes to 0. However, if we take ε = t/n, we then have

P (X(n) ≤ 1− t/n) = (1− t/n)n → e−t,

which, upon rearranging, yields

P (n(1−X(n)) ≤ t) → 1− e−t;

that is, the random variable n(1−X(n)) converges in distribution to an exponential(1) random

variable.

Note that although we talk of a sequence of random variables converging in distribution, it

is really the cdfs that converge, not the random variables. In this very fundamental way
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convergence in distribution is quite different from convergence in probability or convergence

almost surely.

Theorem 5.5.12

If the sequence of random variables, X1, X2, . . ., converges in probability to a random variable

X, the sequence also converges in distribution to X.

Theorem 5.5.13

The sequence of random variables, X1, X2, . . ., converges in probability to a constant µ if

and only if the sequence also converges in distribution to µ. That is, the statement

P (|Xn − µ| > ε) → 0 for every ε > 0

is equivalent to

P (Xn ≤ x) →





0 if x < µ

1 if x > µ.

Theorem 5.5.14 (Central limit theorem)

Let X1, X2, . . . be a sequence of iid random variables whose mgfs exist in a neighborhood of

0 (that is, MXi
(t) exists for |t| < h, for some positive h). Let EXi = µ and VarXi = σ2 > 0.

(Both µ and σ2 are finite since the mgf exists.) Define X̄n = ( 1
n
)
∑n

i=1 Xi. Let Gn(x) denote

the cdf of
√

n(X̄n − µ)/σ. Then, for any x, −∞ < x < ∞,

lim
n→∞

Gn(x) =

∫ x

−∞

1√
2π

e−y2/2dy;

that is,
√

n(X̄n − µ)/σ has a limiting standard normal distribution.

Theorem 5.5.15 (Stronger form of the central limit theorem)

Let X1, X2, . . . be a sequence of iid random variables with EXi = µ and 0 < VarXi = σ2 <

∞. Define X̄n = ( 1
n
)
∑n

i=1 Xi. Let Gn(x) denote the cdf of
√

n(X̄n − µ)/σ. Then, for any x,

−∞ < x < ∞,

lim
n→∞

Gn(x) =

∫ x

−∞

1√
2π

e−y2/2dy;

that is,
√

n(X̄n − µ)/σ has a limiting standard normal distribution.
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The proof is almost identical to that of Theorem 5.5.14, except that characteristic functions

are used instead of mgfs.

Example (Normal approximation to the negative binomial)

Suppose X1, . . . , Xn are a random sample from a negative binomial(r, p) distribution. Recall

that

EX =
r(1− p)

p
, VarX =

r(1− p)

p2

and the central limit theorem tells us that

√
n(X̄ − r(1− p)/p)√

r(1− p)/p2

is approximately N(0, 1). The approximate probability calculation are much easier than the

exact calculations. For example, if r = 10, p = 1
2
, and n = 30, an exact calculation would be

P (X̄ ≤ 11) = P (
30∑
i=1

Xi ≤ 330)

=
330∑
x=0

(
300 + x− 1

x

)
(
1

2
)300+x = 0.8916

Note
∑

X is negative binomial(nr, p). The CLT gives us the approximation

P (X̄ ≤ 11) = P (

√
30(X̄ − 10)√

20
≤
√

30(11− 10)√
20

) ≈ P (Z ≤ 1.2247) = .8888.

Theorem 5.5.17 (Slutsky’s theorem)

If Xn → X in distribution and Yn → a, a constant, in probability, then

(a) YnXn → aX in distribution.

(b) Xn + Yn → X + a in distribution.

Example (Normal approximation with estimated variance)

Suppose that √
n(X̄n − µ)

σ
→ N(0, 1),
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but the value σ is unknown. We know Sn → σ in probability. By Exercise 5.32, σ/Sn → 1

in probability. Hence, Slutsky’s theorem tells us

√
n(X̄n − µ)

Sn

=
σ

Sn

√
n(X̄n − µ)

σ
→ N(0, 1).
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