Sums of Random Variables from a Random Sample

Definition 5.2.1

Let X_{1}, \ldots, X_{n} be a random sample of size n from a population and let $T\left(x_{1}, \ldots, x_{n}\right)$ be a real-valued or vector-valued function whose domain includes the sample space of (X_{1}, \ldots, X_{n}). Then the random variable or random vector $Y=T\left(X_{1}, \ldots, X_{n}\right)$ is called a statistic. The probability distribution of a statistic Y is called the sampling distribution of Y.

The definition of a statistic is very broad, with the only restriction being that a statistic cannot be a function of a parameter. Three statistics that are often used and provide good summaries of the sample are now defined.

Definition

The sample mean is the arithmetic average of the values in a random sample. It is usually denoted by

$$
\bar{X}=\frac{X_{1}+\cdots+X_{n}}{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} .
$$

Definition

The sample variance is the statistic defined by

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} .
$$

The sample standard deviation is the statistic defined by $S=\sqrt{S^{2}}$.

The sample variance and standard deviation are measures of variability in the sample that are related to the population variance and standard deviation.

Theorem 5.2.4
Let x_{1}, \ldots, x_{n} be any numbers and $\bar{x}=\left(x_{1}+\cdots+x_{n}\right) / n$. then
(a) $\min _{a} \sum_{i=1}^{n}\left(x_{i}-a\right)^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$.
(b) $(n-1) s^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}$.

Lemma 5.2.5
Let X_{1}, \ldots, X_{n} be a random sample from a population and let $g(x)$ be a function such that $E g\left(X_{1}\right)$ and $\operatorname{Var} g\left(X_{1}\right)$ exists. Then

$$
E\left(\sum_{i=1}^{n} g\left(X_{i}\right)\right)=n\left(E g\left(X_{1}\right)\right)
$$

and

$$
\operatorname{Var}\left(\sum_{i=1}^{n} g\left(X_{i}\right)\right)=n\left(\operatorname{Var} g\left(X_{1}\right)\right)
$$

THeorem 5.2.6

Let X_{1}, \ldots, X_{n} be a random sample from a population with mean μ and variance $\sigma^{2}<\infty$. Then
(a) $E \bar{X}=\mu$.
(b) $\operatorname{Var} \bar{X}=\frac{\sigma^{2}}{n}$.
(c) $E S^{2}=\sigma^{2}$.

Proof: We just prove part (c) here.

$$
\begin{aligned}
E S^{2} & =E\left(\frac{1}{n-1}\left[\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}\right]\right) \\
& =\frac{1}{n-1}\left(n E X_{1}^{2}-n E \bar{X}^{2}\right) \\
& =\frac{1}{n-1}\left(n\left(\sigma^{2}+\mu^{2}\right)-n\left(\frac{\sigma^{2}}{n}+\mu^{2}\right)\right)=\sigma^{2}
\end{aligned}
$$

About the distribution of a statistic, we have the following theorems. Theorem 5.2.7 Let X_{1}, \ldots, X_{n} be a random sample from a population with mgf $M_{X}(t)$. Then the mgf of the sample mean is

$$
M_{\bar{X}}(t)=\left[M_{X}(t / n)\right]^{n} .
$$

Example (Distribution of the mean)
Let X_{1}, \ldots, X_{n} be a random sample from a $N\left(\mu, \sigma^{2}\right)$ population. Then the mgf of the sample
mean is

$$
\begin{aligned}
M_{\bar{X}}(t) & =\left[\exp \left(\mu \frac{t}{n}+\frac{\sigma^{2}}{2}(t / n)^{2}\right)\right]^{n} \\
& =\exp \left(\mu t+\frac{\sigma^{2} / n}{2} t^{2}\right)
\end{aligned}
$$

Thus, \bar{X} has a $N\left(\mu, \sigma^{2} / n\right)$ distribution.
The mgf of the sample mean a gamma (α, β) random sample is

$$
M_{\bar{X}}(t)=\left[\left(\frac{1}{1-\beta(t / n)}\right)^{\alpha}\right]^{n}=\left(\frac{1}{1-(\beta / n) t}\right)^{n \alpha}
$$

which we recognize as the mgf of a gamma $(n \alpha, \beta / n)$, the distribution of \bar{X}.

If Theorem 5.2.7 is not applicable, because either the resulting mgf of \bar{X} is unrecognizable or the population mgf does not exists. In such cases, the following convolution formula is useful.

Theorem 5.2.9

If X and Y are independent continuous random variables with pdfs $f_{X}(x)$ and $f_{Y}(y)$, then the pdf of $Z=X+Y$ is

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(w) f_{Y}(z-w) d w
$$

Proof: Let $W=X$. The Jacobian of the transformation from (X, Y) to (Z, W) is 1 . So the joint pdf of (Z, W) is

$$
f_{Z, W}(z, w)=f_{X, Y}(w, z-w)=f_{X}(w) f_{Y}(z-w)
$$

Integrating out w, we obtain the marginal pdf of Z and finish the proof.

Example (Sum of Cauchy random variables)
As an example of a situation where the mgf technique fails, consider sampling from a Cauchy distribution. Let U and V be independent Cauchy random variables, $U \sim \operatorname{Cauchy}(0, \sigma)$ and $V \sim \operatorname{Cauch} y(0, \tau)$; that is,

$$
f_{U}(u)=\frac{1}{\pi \sigma} \frac{1}{1+(u / \sigma)^{2}}, \quad f_{V}(v)=\frac{1}{\pi \tau} \frac{1}{1+(v / \tau)^{2}},
$$

where $-\infty<U, V<\infty$. Based on the convolution formula, the pdf of $U+V$ is given by

$$
\begin{aligned}
f_{Z}(z) & =\int_{-\infty}^{\infty} \frac{1}{\pi \sigma} \frac{1}{1+(w / \sigma)^{2}} \frac{1}{\pi \sigma} \frac{1}{1+((z-w) / \tau)^{2}} d w \\
& =\frac{1}{\pi(\sigma+\tau)} \frac{1}{1+(z /(\sigma+\tau))^{2}}
\end{aligned}
$$

where $-\infty<z<\infty$. Thus, the sum of two independent Cauchy random variables is again a Cauchy, with the scale parameters adding. It therefore follows that if Z_{1}, \ldots, Z_{n} are iid Cauchy $(0,1)$ random variables, then $\sum Z_{i}$ is $\operatorname{Cauchy}(0, n)$ and also \bar{Z} is Cauchy $(0,1)$. The sample mean has the same distribution as the individual observations.

Theorem 5.2.11

Suppose X_{1}, \ldots, X_{n} is a random sample from a pdf or $\operatorname{pmf} f(x \mid \theta)$, where

$$
f(x \mid \theta)=h(x) c(\theta) \exp \left(\sum_{i=1}^{k} w_{i}(\theta) t_{i}(x)\right)
$$

is a member of an exponential family. Define statistics T_{1}, \ldots, T_{k} by

$$
T_{i}\left(X_{1}, \ldots, X_{n}\right)=\sum_{j=1}^{n} t_{i}\left(X_{j}\right), \quad i=1, \ldots, k
$$

If the set $\left\{\left(w_{1}(\theta), w_{2}(\theta), \ldots, w_{k}(\theta)\right), \theta \in \Theta\right\}$ contains an open subset of \mathbb{R}^{k}, then the distribution of $\left(T_{1}, \ldots, T_{k}\right)$ is an exponential family of the form

$$
f_{T}\left(u_{1}, \ldots, u_{k} \mid \theta\right)=H\left(u_{1}, \ldots, u_{k}\right)[c(\theta)]^{n} \exp \left(\sum_{i=1}^{k} w_{i}(\theta) u_{i}\right)
$$

The open set condition eliminates a density such as the $N\left(\theta, \theta^{2}\right)$ and, in general, eliminates curved exponential families from Theorem 5.2.11.

