
Sums of Random Variables from a Random Sample

Definition 5.2.1

Let X1, . . . , Xn be a random sample of size n from a population and let T (x1, . . . , xn) be a

real-valued or vector-valued function whose domain includes the sample space of (X1, . . . , Xn).

Then the random variable or random vector Y = T (X1, . . . , Xn) is called a statistic. The

probability distribution of a statistic Y is called the sampling distribution of Y .

The definition of a statistic is very broad, with the only restriction being that a statistic

cannot be a function of a parameter. Three statistics that are often used and provide good

summaries of the sample are now defined.

Definition

The sample mean is the arithmetic average of the values in a random sample. It is usually

denoted by

X̄ =
X1 + · · ·+ Xn

n
=

1

n

n∑
i=1

Xi.

Definition

The sample variance is the statistic defined by

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2.

The sample standard deviation is the statistic defined by S =
√

S2.

The sample variance and standard deviation are measures of variability in the sample that

are related to the population variance and standard deviation.

Theorem 5.2.4

Let x1, . . . , xn be any numbers and x̄ = (x1 + · · ·+ xn)/n. then

(a) mina

∑n
i=1(xi − a)2 =

∑n
i=1(xi − x̄)2.

(b) (n− 1)s2 =
∑n

i=1(xi − x̄)2 =
∑n

i=1 x2
i − nx̄2.
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Lemma 5.2.5

Let X1, . . . , Xn be a random sample from a population and let g(x) be a function such that

Eg(X1) and Varg(X1) exists. Then

E
( n∑

i=1

g(Xi)
)

= n(Eg(X1)).

and

Var
( n∑

i=1

g(Xi)
)

= n(Varg(X1)).

THeorem 5.2.6

Let X1, . . . , Xn be a random sample from a population with mean µ and variance σ2 < ∞.

Then

(a) EX̄ = µ.

(b) VarX̄ = σ2

n
.

(c) ES2 = σ2.

Proof: We just prove part (c) here.

ES2 = E
( 1

n− 1
[

n∑
i=1

X2
i − nX̄2]

)

=
1

n− 1
(nEX2

1 − nEX̄2)

=
1

n− 1
(n(σ2 + µ2)− n(

σ2

n
+ µ2)) = σ2.

¤

About the distribution of a statistic, we have the following theorems. Theorem 5.2.7

Let X1, . . . , Xn be a random sample from a population with mgf MX(t). Then the mgf of

the sample mean is

MX̄(t) = [MX(t/n)]n.

Example (Distribution of the mean)

Let X1, . . . , Xn be a random sample from a N(µ, σ2) population. Then the mgf of the sample
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mean is

MX̄(t) = [exp(µ
t

n
+

σ2

2
(t/n)2)]n

= exp(µt +
σ2/n

2
t2).

Thus, X̄ has a N(µ, σ2/n) distribution.

The mgf of the sample mean a gamma(α, β) random sample is

MX̄(t) = [(
1

1− β(t/n)
)α]n =

( 1

1− (β/n)t

)nα
,

which we recognize as the mgf of a gamma(nα, β/n), the distribution of X̄.

If Theorem 5.2.7 is not applicable, because either the resulting mgf of X̄ is unrecognizable

or the population mgf does not exists. In such cases, the following convolution formula is

useful.

Theorem 5.2.9

If X and Y are independent continuous random variables with pdfs fX(x) and fY (y), then

the pdf of Z = X + Y is

fZ(z) =

∫ ∞

−∞
fX(w)fY (z − w)dw.

Proof: Let W = X. The Jacobian of the transformation from (X,Y ) to (Z,W ) is 1. So

the joint pdf of (Z, W ) is

fZ,W (z, w) = fX,Y (w, z − w) = fX(w)fY (z − w).

Integrating out w, we obtain the marginal pdf of Z and finish the proof. ¤

Example (Sum of Cauchy random variables)

As an example of a situation where the mgf technique fails, consider sampling from a Cauchy

distribution. Let U and V be independent Cauchy random variables, U ∼ Cauchy(0, σ) and

V ∼ Cauchy(0, τ); that is,

fU(u) =
1

πσ

1

1 + (u/σ)2
, fV (v) =

1

πτ

1

1 + (v/τ)2
,
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where −∞ < U, V < ∞. Based on the convolution formula, the pdf of U + V is given by

fZ(z) =

∫ ∞

−∞

1

πσ

1

1 + (w/σ)2

1

πσ

1

1 + ((z − w)/τ)2
dw,

=
1

π(σ + τ)

1

1 + (z/(σ + τ))2
,

where −∞ < z < ∞. Thus, the sum of two independent Cauchy random variables is again

a Cauchy, with the scale parameters adding. It therefore follows that if Z1, . . . , Zn are iid

Cauchy(0,1) random variables, then
∑

Zi is Cauchy(0, n) and also Z̄ is Cauchy(0,1). The

sample mean has the same distribution as the individual observations.

Theorem 5.2.11

Suppose X1, . . . , Xn is a random sample from a pdf or pmf f(x|θ), where

f(x|θ) = h(x)c(θ) exp(
k∑

i=1

wi(θ)ti(x))

is a member of an exponential family. Define statistics T1, . . . , Tk by

Ti(X1, . . . , Xn) =
n∑

j=1

ti(Xj), i = 1, . . . , k.

If the set {(w1(θ), w2(θ), . . . , wk(θ)), θ ∈ Θ} contains an open subset of Rk, then the distri-

bution of (T1, . . . , Tk) is an exponential family of the form

fT (u1, . . . , uk|θ) = H(u1, . . . , uk)[c(θ)]
n exp(

k∑
i=1

wi(θ)ui).

The open set condition eliminates a density such as the N(θ, θ2) and, in general, eliminates

curved exponential families from Theorem 5.2.11.
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