5.1 Basic Concepts of Random Samples

Definition 5.1.1

The random variables X_1, \ldots, X_n are called a random sample of size n from the population f(x) if X_1, \ldots, X_n are mutually independent random variables and the marginal pdf or pmf of each X_i is the same function f(x). Alternatively, X_1, \ldots, X_n are called *independent* and *identically distributed* (iid) random variables with pdf or pmf f(x). This is commonly abbreviated to iid random variables.

If the population pdf or pmf is a member of a parametric family with pdf or pmf given by $f(x|\theta)$, then the joint pdf or pmf is

$$f(x_1,\ldots,x_n|\theta) = \prod_{i=1}^n f(x_i|\theta),$$

where the same parameter value θ is used in each of the terms in the product.

Example Let X_1, \ldots, X_n be a random sample from an exponential(β) population. Specifically, X_1, \ldots, X_n might correspond to the times (measured in years) until failure for n identical circuit boards that are put on test and used until they fail. The joint pdf of the sample is

$$f(x_1, \dots, X_n | \beta) = \prod_{i=1}^n f(x_i | \beta) = \frac{1}{\beta^n} e^{-\sum_{i=1}^n x_i / \beta}.$$

This pdf can be used to answer questions about the sample. For example, what is the probability that all the boards last more than 2 years?

$$P(X_1 > 2, \dots, X_n > 2) = P(X_1 > 2) \cdots P(X_n > 2)$$
$$= [P(X_1 > 2)]^n = (e^{-2/\beta})^n = e^{-2n/\beta}.$$

Random sampling models

- (a) Sampling from an infinite population. The samples are iid.
- (b) Sampling with replacement from a finite population. The samples are iid.

(c) Sampling without replacement from a finite population. This sampling is sometimes called simple random sampling. The samples are not iid exactly. However, if the population size N is large compared to the sample size n, the samples will be approximately iid.

Example 5.1.3 (Finite population model)

Suppose $\{1, ..., 1000\}$ is the finite population, so N = 1000. A sample of size n = 10 is drawn without replacement. What is the probability that all ten sample values are greater than 200? If $X_1, ..., X_{10}$ were mutually independent we would have

$$P(X_1 > 200, \dots, X_{10} > 200) = (\frac{800}{1000})^{10} = .107374.$$

Without the independent assumption, we can calculate as follows.

$$P(X_1 > 200, \dots, X_{10} > 200) = \frac{\binom{800}{10}\binom{200}{0}}{\binom{1000}{10}} = .106164.$$

Thus, the independence assumption is approximately correct.