5.1 Basic Concepts of Random Samples

Definition 5.1.1

The random variables X_{1}, \ldots, X_{n} are called a random sample of size n from the population $f(x)$ if X_{1}, \ldots, X_{n} are mutually independent random variables and the marginal pdf or pmf of each X_{i} is the same function $f(x)$. Alternatively, X_{1}, \ldots, X_{n} are called independent and identically distributed (iid) random variables with pdf or $\operatorname{pmf} f(x)$. This is commonly abbreviated to iid random variables.

If the population pdf or pmf is a member of a parametric family with pdf or pmf given by $f(x \mid \theta)$, then the joint pdf or pmf is

$$
f\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(x_{i} \mid \theta\right)
$$

where the same parameter value θ is used in each of the terms in the product.

Example Let X_{1}, \ldots, X_{n} be a random sample from an exponential (β) population. Specifically, X_{1}, \ldots, X_{n} might correspond to the times (measured in years) until failure for n identical circuit boards that are put on test and used until they fail. The joint pdf of the sample is

$$
f\left(x_{1}, \ldots, X_{n} \mid \beta\right)=\prod_{i=1}^{n} f\left(x_{i} \mid \beta\right)=\frac{1}{\beta^{n}} e^{-\sum_{i=1}^{n} x_{i} / \beta} .
$$

This pdf can be used to answer questions about the sample. For example, what is the probability that all the boards last more than 2 years?

$$
\begin{aligned}
& P\left(X_{1}>2, \ldots, X_{n}>2\right)=P\left(X_{1}>2\right) \cdots P\left(X_{n}>2\right) \\
& =\left[P\left(X_{1}>2\right)\right]^{n}=\left(e^{-2 / \beta}\right)^{n}=e^{-2 n / \beta} .
\end{aligned}
$$

Random sampling models

(a) Sampling from an infinite population. The samples are iid.
(b) Sampling with replacement from a finite population. The samples are iid.
(c) Sampling without replacement from a finite population. This sampling is sometimes called simple random sampling. The samples are not iid exactly. However, if the population size N is large compared to the sample size n, the samples will be approximately iid.

Example 5.1.3 (Finite population model)
Suppose $\{1, \ldots, 1000\}$ is the finite population, so $N=1000$. A sample of size $n=10$ is drawn without replacement. What is the probability that all ten sample values are greater than 200? If X_{1}, \ldots, X_{10} were mutually independent we would have

$$
P\left(X_{1}>200, \ldots, X_{10}>200\right)=\left(\frac{800}{1000}\right)^{10}=.107374
$$

Without the independent assumption, we can calculate as follows.

$$
P\left(X_{1}>200, \ldots, X_{10}>200\right)=\frac{\binom{800}{10}\binom{200}{0}}{\binom{1000}{10}}=.106164
$$

Thus, the independence assumption is approximately correct.

