
Multivariate Distribution

The random vector X = (X1, . . . , Xn) has a sample space that is a subset of Rn. If X is dis-

crete random vector, then the joint pmf of x is the function defined by f(x) = f(x1, . . . , xn) =

P (X1 = x1, . . . , Xn − xn) for each (x1, . . . , xn) ∈ Rn. Then for any A ⊂ Rn,

P (X ∈ A) =
∑
x∈A

f(x).

If X is a continuous random vector, the joint pdf of X is a function f(x1, . . . , xn) that

satisfies

P (X ∈ A) =

∫
· · ·

∫

A

f(x)dx =

∫
· · ·

∫

A

f(x1, . . . , xn)dx1 · · · dxn.

Let g(x) = g(x1, . . . , xn) be a real-valued function defined on the sample space of X. Then

g(X) is a random variable and the expected value of g(X) is

Eg(X) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
g(x)f(x)dx

and

Eg(X) =
∑

x∈Rn

g(x)f(x)

in the continuous and discrete cases, respectively.

The marginal distribution of (X1, . . . , Xn) , the first k coordinates of (X1, . . . , Xn), is given

by the pdf or pmf

f(x1, . . . , xk) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
f(x1, . . . , xn)dxk+1 · · · dxn

or

f(x1, . . . , xk) =
∑

(xk+1,...,xn)∈Rn−k

f(x1, . . . , xn)

for every (x1, . . . , xk) ∈ Rk.

If f(x1, . . . , xk) > 0, the conditional pdf or pmf of (Xk+1, . . . , Xn) given X1 = x1, . . . , Xk = xk

is the function of (xk+1, . . . , xn) defined by

f(xk=1, . . . , xn|x1, . . . , xk) =
f(x1, . . . , xn)

f(x1, . . . , xk)
.
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Example 4.6.1 (Multivariate pdfs)

Let n = 4 and

f(x1, x2, x3, x4) =





3
4
(x2

1 + x2
2 + x2

3 + x2
4) 0 < xi < 1, i = 1, 2, 3, 4

0 otherwise

The joint pdf can be used to compute probabilities such as

P (X1 <
1

2
, X2 <

3

4
, X4 >

1

2
)

=

∫ 1

1
2

∫ 1

0

∫ 3
4

0

∫ 1
2

0

3

4
(x2

1 + x2
2 + x2

3 + x2
4)dx1dx2dx3dx4 =

151

1024
.

The marginal pdf of (X1, X2) is

f(x1, x2) =

∫ 1

0

∫ 1

0

3

4
(x2

1 + x2
2 + x2

3 + x2
4)dx2dx4 =

3

4
(x2

1 + x2
2) +

1

2

for 0 < x1 < 1 and 0 < x2 < 1.

Definition 4.6.2 Let n and m be positive integers and let p1, . . . , pn be numbers satisfying

0 ≤ pi ≤ 1, i = 1, . . . , n, and
∑n

i=1 pi = 1. Then the random vector (X1, . . . , Xn) has

a multinomial distribution with m trials and cell proabilities p1, . . . , pn if the joint pmf of

(X1, . . . , Xn) is

f(x1, . . . , xn) =
m!

x1! · · · xn!
px1

1 · · · pxn
n = m!

n∏
i=1

pxi
i

xi!

on the set of (x1, . . . , xn) such that each xi is a nonnegative integer and
∑n

i=1 xi = m.

Example 4.6.3 (Multivariate pmf) Consider tossing a six-sided die 10 times. Suppose the

die is unbalanced so that the probability of observing an i is i/21. Now consider the

vector (X1, . . . , X6), where Xi counts the number of times i comes up in the 10 tosses.

Then (X1, . . . , X6) has a multinomial distribution with m = 10 and cell probabilities p1 =

1
21

, . . . , p6 = 6
21

. For example, the probability of the vector (0, 0, 1, 2, 3, 4) is

f(0, 0, 1, 2, 3, 4) =
10!

0!0!1!2!3!4!
(

1

21
)0(

2

21
)0(

3

21
)1(

4

21
)2(

5

21
)3(

6

21
)4 = 0.0059.

The factor m!
x1!···xn!

is called a multinomial coefficient. It is the number of ways that m objects

can be divided into n groups with x1 in the first group, x2 in the second group, . . ., and xn

in the nth group.
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Theorem 4.6.4 (Multinomial Theorem)

Let m and n be positive integers. Let A be the set of vectors x = (x1, . . . , xn) such that

each xi is a nonnegative integer and
∑n

i=1 xi = m. Then, for any real numbers p1, . . . , pn,

(p1 + . . . + pn)m =
∑
x∈A

m!

x1! · · · xn!
px1

1 . . . pxn
n .

Definition 4.6.5 Let X1, . . . , Xn be random vectors with joint pdf or pmf f(x1, . . . , xn).

Let fX i
(xi) denote the marginal pdf or pmf of X i. Then X1, . . . , Xn are called mutually

independent random vectors if, for every (x1, . . . , xn),

f(x1, . . . , xn) = fX1
(x1) . . . fXn

(xn) =
n∏

i=1

fX i
(xi).

If the Xi’s are all one dimensional, then X1, . . . , Xn are called mutually independent random

variables.

Mutually independent random variables have many nice properties. The proofs of the fol-

lowing theorems are analogous to the proofs of their counterparts in Sections 4.2 and 4.3.

Theorem 4.6.6 (Generalization of Theorem 4.2.10)

Let X1, . . . , Xn be mutually independent random variables. Let g1, . . . , gn be real-valued

functions such that gi(xi) is a function only of xi, i = 1, . . . , n. Then

E(g1(X1) · · · g(Xn)) = (Eg1(X1)) · · · (Egn(Xn)).

Theorem 4.6.7 (Generalization of Theorem 4.2.12)

Let X1, . . . , Xn be mutually independent random variables with mgfs MX1(t), . . . , MXn(t).

Let Z = X1 + · · ·+ Xn. Then the mgf of Z is

MZ(t) = MX1(t) · · ·MXn(t).

In particular, if X1, . . . , Xn all have the same distribution with mgf MX(t), then

MZ(t) = (MX(t))n.
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Example 4.6.8 (Mgf of a sum of gamma variables)

Suppose X1, . . . , Xn are mutually independent random variables, and the distribution of Xi

is gamma(αi, β). Thus, if Z = X1 + . . . + Xn, the mgf of Z is

MZ(t) = MX1(t) · · ·MXn(t) = (1− βt)−α1 · · · (1− βt)−αn = (1− βt)−(α1+···+αn).

This is the mgf of a gamma(α1 + · · · + αn, β) distribution. Thus, the sum of a indepen-

dent gamma random variables that have a common scale parameter β also has a gamma

distribution.

Example

Let X1, . . . , Xn be mutually independent random variables with Xi ∼ N(µi, σ
2
i ). Let a1, . . . , an

and b1, . . . , bn be fixed constants. Then

Z =
n∑

i=1

(aiXi + bi) ∼ N(
n∑

i=1

(aiµi + bi),
n∑

i=1

a2
i σ

2
i ).

Theorem 4.6.11 (Generalization of Lemma 4.2.7)

Let X1, . . . , Xn be random vectors. Then X1, . . . , Xn are mutually independent random

vectors if and only if there exist functions gi(xi), i = 1, . . . , n, such that the joint pdf or pmf

of (X1, . . . , Xn) can be written as

f(x1, . . . , xn) = g1(x1) · · · gn(xn).

Theorem 4,6,12 (Generalization of Theorem 4.3.5)

Let X1, . . . , Xn be random vectors. Let gi(xi) be a function only of xi, i = 1, . . . , n. Then

the random vectors Ui = gi(X i), i = 1, . . . , n, are mutually independent.

Let (X1, . . . , Xn) be a random vector with pdf fX(x1, . . . , xn). Let A = {x : fX(x) > 0}.
Consider a new random vector (U1, . . . , Un), defined by U1 = g1(X1, . . . , Xn), . . ., Un =

gn(X1, . . . , Xn). Suppose that A0, A1, . . . , Ak form a partition of A with these properties.

The set A0, which may be empty, satisfies P ((X1, . . . , Xn) ∈ A0) = 0. The transformation

(U1, . . . , Un) = (g1(X), . . . , gn(X)) is a one-to-one transformation from Ai onto B for each

i = 1, 2, . . . , k. Then for each i, the inverse functions from B to Ai can be found. Denote the
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ith inverse by x1 = h1i(u− 1, . . . , un), . . . , xn = hni(u1, . . . , un). Let Ji denote the Jacobian

computed from the ith inverse. That is,

Ji =

∣∣∣∣∣∣∣∣∣∣∣∣

∂h1i(u)
∂u1

∂h1i(u)
∂u2

. . . ∂h1i(u)
∂u1

∂h2i(u)
∂u1

∂h2i(u)
∂u2

. . . ∂h2i(u)
∂u1

...
...

. . .
...

∂hni(u)
∂u1

∂hni(u)
∂u2

. . . ∂hni(u)
∂u1

∣∣∣∣∣∣∣∣∣∣∣∣

the determinant of an n×n matrix. Assuming that these Jacobians do not vanish identically

on B, we have the following representation of the joint pdf, fU(u1, . . . , un), for u ∈ B:

fu(u1, . . . , un) =
k∑

i=1

fX(h1i(u1, . . . , un), . . . , hni(u1, . . . , un))|Ji|.
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