
4. Multiple Random Variables

4.1 Joint and Marginal Distributions

Definition 4.1.1 An n-dimensional random vector is a function from a sample space S into

Rn, n-dimensional Euclidean space.

Suppose, for example, that with each point in a sample space we associate an ordered pair

of numbers, that is, a point (x, y) ∈ R2, where R2 denotes the plane. Then we have defined

a two -dimensional (or bivariate) random vector (X,Y ).

Example 4.1.2 (Sample space for dice)

Consider the experiment of tossing two fair dice. The sample space for this experiment has

36 equally likely points. Let

X=sum of the two dice and Y =|difference of two dice|.

In this way we have defined then bivariate random vector (X, Y ).

The random vector (X, Y ) defined above is called a discrete random vector because it has

only a countable (in this case, finite) number of possible values. The probabilities of events

defined in terms of X and Y are just defined in terms of the probabilities of the corresponding

events in the sample space S. For example,

P (X = 5, Y = 3) = P ({4, 1}, {1, 4}) =
2

36
=

1

18
.

Definition 4.1.2 Let (X,Y ) be a discrete bivariate random vector. Then the function f(x, y)

from R2 intoR defined by f(x, y) = P (X = x, Y = y) is called the joint probability mass function

or joint pmf of (X,Y ). If it is necessary to stress the fact that f is the joint pmf of the vector

(X,Y ) rather than some other vector, the notation fX,Y (x, y) will be used.

The joint pmf can be used to compute the probability of any event defined in terms of (X, Y ).
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Let A be any subset of R2. Then

P ((X, Y ) ∈ A) =
∑

(x,y)∈A

f(x, y).

Expectations of functions of random vectors are computed just as with univariate random

variables. Let g(x, y) be a real-valued function defined for all possible values (x, y) of the

discrete random vector (X, Y ). Then g(X, Y ) is itself a random variable and its expected

value Eg(X,Y ) is given by

Eg(X, Y ) =
∑

(x,y)∈R2

g(x, y)f(x, y).

Example 4.1.2 (Continuation of Example 4.1.2)

For the (X,Y ) whose joint pmf is given in the following table

X

2 3 4 5 6 7 8 9 10 11 12

0 1
36

1
36

1
36

1
36

1
36

1
36

1 1
18

1
18

1
18

1
18

1
18

Y 2 1
18

1
18

1
18

1
18

3 1
18

1
18

1
18

4 1
18

1
18

5 1
18

Letting g(x, y) = xy, we have

EXY = (2)(0)
1

36
+ · · ·+ (7)(5)

1

18
= 13

11

18
.

The expectation operator continues to have the properties listed in Theorem 2.2.5 (textbook).

For example, if g1(x, y) and g2(x, y) are two functions and a, b and c are constants, then

E(ag1(X, Y ) + bg2(X,Y ) + c) = aEg1(X,Y ) + bEg2(X, Y ) + c.

For any (x, y), f(x, y) ≥ 0 since f(x, y) is a probability. Also, since (X,Y ) is certain to

be in R2,
∑

(x,y)∈R2

f(x, y) = P ((X,Y ) ∈ R2) = 1.
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Theorem 4.1.6

Let (X, Y ) be a discrete bivariate random vector with joint pmf fXY (x, y). Then the marginal

pmfs of X and Y , fX(x) = P (X = x) and fY (y) = P (Y = y), are given by

fX(x) =
∑

y∈R
fX,Y (x, y) and fY (y) =

∑

x∈R
fX,Y (x, y).

Proof: For any x ∈ R, let Ax = {(x, y) : −∞ < y < ∞}. That is, Ax is the line in the

plane with first coordinate equal to x. Then, for any x ∈ R,

fX(x) = P (X = x)

= P (X = x,−∞ < Y < ∞) (P (−∞ < Y < ∞) = 1)

= P ((X, Y ) ∈ Ax) (definition of Ax)

=
∑

(x,y)∈Ax

fX,Y (x, y)

=
∑

y∈R
fX,Y (x, y).

The proof for fY (y) is similar. ¤

Example 4.1.7 (Marginal pmf for dice)

Using the table given in Example 4.1.4, compute the marginal pmf of Y . Using Theorem

4.1.6, we have

fY (0) = fX,Y (2, 0) + · · ·+ fX,Y (12, 0) =
1

6
.

Similarly, we obtain

fY (1) =
5

18
, fY (2) =

2

9
, fY (3) =

1

6
, fY (4) =

1

9
, fY (5) =

1

18
.

Notice that
∑5

i=0 fY (i) = 1.

The marginal distributions of X and Y do not completely describe the joint

distribution of X and Y . Indeed, there are many different joint distributions that

have the same marginal distribution. Thus, it is hopeless to try to determine
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the joint pmf from the knowledge of only the marginal pmfs. The next example

illustrates the point.

Example 4.1.9 (Same marginals, different joint pmf)

Considering the following two joint pmfs,

f(0, 0) =
1

12
, f(1, 0) =

5

12
, , f(0, 1) = f(1, 1) =

3

12
, f(x, y) = 0 for all other values.

and

f(0, 0) = f(0, 1) =
1

6
, f(1, 0) = f(1, 1) =

1

3
, f(x, y) = 0 for all other values.

It is easy to verify that they have the same marginal distributions. The marginal of X is

fX(0) =
1

3
, fX(1) =

2

3
.

The marginal of Y is

fY (0) =
1

2
, fY (1) =

1

2
.

In the following we consider random vectors whose components are continuous random vari-

ables.

Definition 4.1.10A function f(x, y) from R2 into R is called a joint probability density func-

tion or joint pdf of the continuous bivariate random vector (X, Y ) if, for every A ⊂ R2,

P ((X, Y ) ∈ A) =

∫ ∫

A

f(x, y)dxdy.

If g(x, y) is a real-valued function, then the expected value of g(X, Y ) is defined to be

Eg(X, Y ) =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(x, y)dxdy.

The marginal probability density functions of X and Y are defined as

fX(x) =

∫ ∞

−∞
f(x, y)dy, −∞ < x < ∞,

fY (y) =

∫ ∞

−∞
f(x, y)dx, −∞ < y < ∞.
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Any function f(x, y) satisfying f(x, y) ≥ 0 for all (x, y) ∈ R2 and

1 =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)dxdy

is the joint pdf of some continuous bivariate random vector (X, Y ).

Example 4.1.11 (Calculating joint probabilities-I)

Define a joint pdf by

f(x, y) =





6xy2 0 < x < 1 and 0 < y < 1

0 otherwise

Now, consider calculating a probability such as P (X +Y ≥ 1). Let A = {(x, y) : x+ y ≥ 1},
we can re-express A as

A = {(x, y) : x + y ≥ 1, 0 < x < 1, 0 < y < 1} = {(x, y) : 1− y ≤ x < 1, 0 < y < 1}.

Thus, we have

P (X + Y ≥ 1) =

∫

A

∫
f(x, y)dxdy =

∫ 1

0

∫ 1

1−y

6xy2dxdy =
9

10
.

The joint cdf is the function F (x, y) defined by

F (x, y) = P (X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
f(s, t)dtds.

Hence,
∂2F (x, y)

∂x∂y
= f(x, y)

and

−∂2P (X ≤ x, Y ≥ y)

∂x∂y
= f(x, y)
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