3.2.5 Negative Binomial Distribution

In a sequence of independent $\operatorname{Bernoulli}(p)$ trials, let the random variable X denote the trial at which the $r^{t h}$ success occurs, where r is a fixed integer. Then

$$
\begin{equation*}
P(X=x \mid r, p)=\binom{x-1}{r-1} p^{r}(1-p)^{x-r}, \quad x=r, r+1, \ldots, \tag{1}
\end{equation*}
$$

and we say that X has a negative $\operatorname{binomial}(r, p)$ distribution.

The negative binomial distribution is sometimes defined in terms of the random variable $Y=$ number of failures before r th success. This formulation is statistically equivalent to the one given above in terms of $X=$ trial at which the r th success occurs, since $Y=X-r$. The alternative form of the negative binomial distribution is

$$
P(Y=y)=\binom{r+y-1}{y} p^{r}(1-p)^{y}, \quad y=0,1, \ldots
$$

The negative binomial distribution gets its name from the relationship

$$
\begin{equation*}
\binom{r+y-1}{y}=(-1)^{y}\binom{-r}{y}=(-1)^{y} \frac{(-r)(-r-1) \cdots(-r-y+1)}{(y)(y-1) \cdots(2)(1)} \tag{2}
\end{equation*}
$$

which is the defining equation for binomial coefficient with negative integers. Along with (2), we have

$$
\sum_{y} P(Y=y)=1
$$

from the negative binomial expansition which states that

$$
\begin{aligned}
(1+t)^{-r} & =\sum_{k}\binom{-r}{k} t^{k} \\
& =\sum_{k}(-1)^{k}\binom{r+k-1}{k} t^{k}
\end{aligned}
$$

$$
\begin{aligned}
E Y & =\sum_{y=0}^{\infty} y\binom{r+y-1}{y} p^{r}(1-p)^{y} \\
& =\sum_{y=1}^{\infty} \frac{(r+y-1)!}{(y-1)!(r-1)!} p^{r}(1-p)^{y} \\
& =\sum_{y=1}^{\infty} \frac{r(1-p)}{p}\binom{r+y-1}{y-1} p^{r+1}(1-p)^{y-1} \\
& =\frac{r(1-p)}{p} \sum_{z=0}^{\infty}\binom{r+1+z-1}{z} p^{r+1}(1-p)^{z} \\
& =r \frac{1-p}{p} .
\end{aligned}
$$

A similar calculation will show

$$
\operatorname{Var} Y=\frac{r(1-p)}{p^{2}}
$$

Example 3.2.6 (Inverse Binomial Sampling
A technique known as an inverse binomial sampling is useful in sampling biological populations. If the proportion of individuals possessing a certain characteristic is p and we sample until we see r such individuals, then the number of individuals sampled is a negative bnomial rndom variable.

0.1 Geometric distribution

The geometric distribution is the simplest of the waiting time distributions and is a special case of the negative binomial distribution. Let $r=1$ in (1) we have

$$
P(X=x \mid p)=p(1-p)^{x-1}, \quad x=1,2, \ldots,
$$

which defines the pmf of a geometric random variable X with success probability p.
X can be interpreted as the trial at which the first success occurs, so we are "waiting for a success". The mean and variance of X can be calculated by using the negative binomial formulas and by writing $X=Y+1$ to obtain

$$
E X=E Y+1=\frac{1}{P} \quad \text { and } \quad \operatorname{Var} X=\frac{1-p}{p^{2}} .
$$

The geometric distribution has an interesting property, known as the "memoryless" property. For integers $s>t$, it is the case that

$$
\begin{equation*}
P(X>s \mid X>t)=P(X>s-t) \tag{3}
\end{equation*}
$$

that is, the geometric distribution "forgets" what has occurred. The probability of getting an additional $s-t$ failures, having already observed t failures, is the same as the probability of observing $s-t$ failures at the start of the sequence.

To establish (3), we first note that for any integer n,

$$
P(X>n)=P(\text { no success in } n \text { trials })=(1-p)^{n}
$$

and hence,

$$
\begin{aligned}
P(X>s \mid X>t) & =\frac{P(X>s \text { and } X>t)}{P(X>t)}=\frac{P(X>s)}{P(X>t)} \\
& =(1-p)^{s-t}=P(X>s-t) .
\end{aligned}
$$

