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Distributed
riables

Marginal Probability Mass Functions

of X and Y, denoted p,(x) and
q by

=> p(.y)

X

Chapter 5
t Probability

Joint Probability Mass Function

X and Y be two discrete rv’s defined on the

] ace of an experiment. The joint

mass function p(x, y) is defined for
bers (x, y) by

X=xand Y =y)

Joint Probability Density Function

et X and Y be continuous rv’s. Then f'(x, y)
joint probability density function for X
r any two-dimensional set 4

A= [ £x, y)dxdy
A




f(x,)

A = shaded
rectangle

Independent Random Variables

dom variables X and Y are said to be
nt if for every pair of x and y

=px(x): py(»)

Independence — More Than Two
ndom Variables

variables X, X,,....X, are

1 every subset Xi1 ’Xiz"“’Xin
joint pmf or pdf of the
roduct of the marginal

arginal Probability Density Functions

ginal probability density functions of
ted f(x) and f(»), are given by

More Than Two Random Variables

.,X, are all discrete random variables,
of the variables is the function

RS —x....X, =x,)
inuous, the joint pdf is the
n intervals [a,,b,],

Conditional Probability Function

d Y be two continuous rv’s with joint pdf




Marginal probability distributions (Cont.) I Mean and Variance |

® If X and Y are discrete random variables with joint @ If the marginal probability distribution of X has the probability
probability mass function fyy(x,y), then the marginal function f(x), then

probability mass function of X and Y are
E(X)zﬂx:ZXfX(x)=Z){foy(x,y)]=zzxf”(x,y)
x)=P(X =x)= X,Y x x R, T R
= SR =3 o (5.7
R

[r(N=P¥ =y)=) fiy(X.Y) VX)) =0 =Y (k=) [y () = 2 (= 1,)* D fry (%)
Ry x x R,
=Zz(x_ﬂx)2fxy(xay)=Z(x_ﬂx)zfxy(xay)

where R, denotes the set of all points in the range of F R o &
(X, Y) for which X = x and Ry denotes the set of all ® R =Set of all points in the range of (X,Y).
points in the range of (X, Y) for which ¥ =y ® Example 5-4.
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Joint probability mass function — example

Conditional probability
The joint density, P{X, ¥}, of the number of minutes waiting to catch the first fish, X,
and the number of minutes waiting to catch the second fish, ¥, is given below.

e = T T ® Given discrete random variables X and Y with joint
) 1 2 3 P{X=i} probability mass function fyy(X,Y), the conditional
. D 0oL 002 008 0.11 probability mass function of Y given X=x is
i 2 001 002 008 0.1
3 007 008 063 0.78 - -
ColumnSumP_[0.09 _ 0.12_ 0.79 1.00 Fply%) = fyi(y) = By (X:y)/ (%) tor it =0
Y=k}

o The (joint) chance of waiting 3 minutes to catch the first fish and 3 minutes to
catch the second fish is:

o The (marginal) chance of waiting 3 minutes to catch the first fish is:

o The (marginal) chance of waiting 2 minutes to catch the first fish is (circle all
that are correct):

o The chance of waiting at least two minutes to catch the first fish is (circle
none, one or more):

® The chance of waiting at most two minutes to catch the first fish and at most
two minutes to catch the second fish is (circle none, one or more):
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Conditional probability (Cont.) y

® Because a conditional probability mass function fy(y) is a b 0.410
probability mass function for all'y in R, the following
properties are satisfied:

) fY‘X(y) >0 3 .0.410 . 0.511
'0.154 o 0.383 " 0.640
@ z fy(y) =1
R, I .0.0256 . 0.096 . 0.320 N 0.800
() P(Y=y[X=x) = fy\(y)
0.0016 0.008 0.040 0.200 1.0
0 e . . ] .

0 1 2 3 4 x
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Conditional probability (Cont.)

® Let R, denote the set of all points in the range of
(X,Y) for which X=x. The conditional mean of Y
given X=x, denoted as E(Y[x) or Ly, is

E(Y %)= ¥y (»)

® And the conditional variance of Y given X=x,
denoted as V(Y|x) or 6%y, is

V(Y |x)= Z(y_luY\x)szlx(y) = Zyszb( (y)_;usz{\x

.2

cted Values,

Covariance

ariance between two rv’s X and Yis
E[(X —px ) (Y - pty)]

v)p(x,y) discrete

dy continuous

Independence

® For discrete random variables X and Y, if any one of
the following properties is true, the others are also
true, and X and Y are independent.

(D) fy(xy) = ix() fy(y)  forall xandy
(2) fy(y) = fy(y) for all x and y with fy(x) > 0
(3) fxy(y) = fx(x) for all x and y with fy(y) > 0

(4)P(X e A,Y € B)=P(X € A)P(Y € B) for any
sets A and B in the range of X and Y respectively.

Expected Value

X and Y be jointly distributed rv’s with pmf
or pdf f'(x, y) according to whether the
, are discrete or continuous. Then the
f a function (X, Y), denoted

Short-cut Formula for Covariance




Correlation Correlation Proposition

are either both positive or both

tion coefficient of X and Y, B o)

X, Y), Py or just p, is

Correlation Proposition

d Y are independent, then p =0,
does not imply independence.

Statistic Random Samples

y quantity whose value can be ..,X,, are said to form a (simple

ample data. Prior to obtaining
inty as to what value of any
sult. A statistic is a




Simulation Experiments

llowing characteristics must be specified:

atistic of interest.

Using the Sample Mean

X, be a random sample from a
with mean value # and standard

The Central Limit Theorem
be a random sample from a

large, X has
distribution with

. )
mean value 4 and varianceo”.
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Distribution

Normal Population Distribution

a random sample from a
n with mean value # and

. Then for any n, X
is T

The Central Limit Theorem

small to

moderate n




Rule of Thumb

tral Limit Theorem can

5.5

tribution

Expected Value of a Linear
mbination

ave mean values 4,y ly
2., o‘f , respectively

roximate Lognormal Distribution

a random sample from a

ich only positive values are
Then if n is

ct Y=X.X,...X, has
tribution.

Linear Combination

ollection of # random variables
nd # numerical constants a,....a,,

riance of a Linear Combination

independent,
R X))+ +aV (X,)




Variance of a Linear Combination Difference Between Two Random
1ables

aiajCOV(Xi,Xj)

o

| | Central Limit Theorem — heuristic formulation

Difference Between Normal Random
iables

Central Limit Theorem:
When sampling from almost any distribution,

are independent, normally

X is approximately Normally distributed in large samples.

ion Applet:
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Independence

® For discrete random variables X and Y, if any one of
the following properties is true, the others are also

y ¥
true, and X and Y are independent. L 10.0095 , 0.9702 10.98 L 098

le

(1) fyy(xy) = £x(x) fy(y) forall x and y
(2) fy(y) = fy(y) for all x and y with fy(x) > 0
(3) fx,(y) = fx(x) for all x and y with fy(y) > 0

4)P(X e A, Y € B)=P(X € A)P(Y € B) for any
sets A and B in the range of X and Y respectively.

0.0002 0.0198 0.02 0.02
— 8 8
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Recall we looked at the sampling distribution of X

® For the sample mean calculated from a random sample,
E(X) =wand SD( X) =%— , provided
n
X =X +X,+ ... + X, )/n, and X, ~N(u, ). Then

® X ~N(u, %). And variability from sample to sample
in the sample-means is given by the variability of the
individual observations divided by the square root of
the sample-size. In a way, averaging decreases variability.

Central Limit Effect -- Histograms of sample means

0 02 04 06 08 10

0 02 04 06 08 1.0

Central Limit Effect -- Histograms of sample means

0
00 02 04 06 08 1.0.

00 02 04 06 08 1.0

Central Limit Effect —

Histograms of sample means

Central Limit Effect —

Histograms of sample means

0
00 02 04 06 08

1.0}

1 Y=X

0 r T T T
00 02 04 06 08 10

n=2

3
2|
1
0

00 02 04 06 08 1.0

Central Limit Effect —

Histograms of sample means

n=1




Central Limit Effect -- Histograms of sample means
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Central Limit Theorem —
theoretical formulation

Let in,Xz,.,., Xk""Jl be a sequence of independent

observations from one specific random process. Let

and E(X)=u and SD(X)= nand both be

finite (0< o <eo; ||<eo). If X == ¥ X, sample-avg,
nonp_1 é

Then X has a distribution which approaches

N(u, 6%/n), as n—oo.

Central Limit Effect — _
Histograms of sample means 3
y=12(x-1), xefo,
S 2
n=1
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Central Limit Theorem — heuristic formulation

Central Limit Theorem:
‘When sampling from almost any distribution,

X is approximately Normally distributed in large samples.
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