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Chapter 5

Joint Probability 
Distributions and 
Random Samples
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5.1

Jointly Distributed  
Random Variables
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Joint Probability Mass Function
Let X and Y be two discrete rv’s defined on the 
sample space of an experiment.  The joint 
probability mass function p(x, y) is defined for 
each pair of numbers (x, y) by

( , ) (  and )p x y P X x Y y= = =

Let A be the set consisting of pairs of (x, y) 
values, then

( )
( ),

, ( , )
x y A

P X Y A p x y
∈

 ∈ =  ∑ ∑
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Marginal Probability Mass Functions

The marginal probability mass 
functions of X and Y, denoted pX(x) and 
pY(y) are given by

( ) ( , ) ( ) ( , )X Y
y x

p x p x y p y p x y= =∑ ∑
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Joint Probability Density Function
Let X and Y be continuous rv’s.  Then f (x, y) 
is a joint probability density function for X
and Y if for any two-dimensional set A

( ), ( , )
A

P X Y A f x y dxdy ∈ =  ∫∫
If A is the two-dimensional rectangle

( ), ( , )
b d

a c

P X Y A f x y dydx ∈ =  ∫ ∫

{ }( , ) : , ,x y a x b c y d≤ ≤ ≤ ≤
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( ),P X Y A ∈ 

= Volume under density surface above A

( , )f x y

A = shaded 
rectangle
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Marginal Probability Density Functions

The marginal probability density functions of 
X and Y, denoted fX(x) and fY(y), are given by 

( ) ( , ) for 

( ) ( , ) for 

X

Y

f x f x y dy x

f y f x y dx y

∞

−∞
∞

−∞

= − ∞ < < ∞

= − ∞ < < ∞

∫

∫
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Independent Random Variables
Two random variables X and Y are said to be 
independent if for every pair of x and y
values

( , ) ( ) ( )X Yp x y p x p y= ⋅

when X and Y are discrete or
( , ) ( ) ( )X Yf x y f x f y= ⋅

when X and Y are continuous.   If the 
conditions are not satisfied for all (x, y) then 
X and Y are dependent.
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More Than Two Random Variables

If  X1, X2,…,Xn are all discrete random variables, 
the joint pmf of the variables is the function

1 1 1( ,..., ) ( ,..., )n n np x x P X x X x= = =
If the variables are continuous, the joint pdf is the 
function f such that for any n intervals [a1,b1], 
…,[an,bn], 1 1 1( ,..., )n n nP a X b a X b≤ ≤ ≤ ≤

1

1

1 1... ( ,..., ) ...
n

n

bb

n n
a a

f x x dx dx= ∫ ∫
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Independence – More Than Two 
Random Variables

The random variables X1, X2,…,Xn are 
independent if for every subset
of the variables, the joint pmf or pdf of the 
subset is equal to the product of the marginal 
pmf’s or pdf’s.

1 2
, ,...,

ni i iX X X

Stat 110A, UCLA, Ivo DinovSlide 12

Conditional Probability Function

Let X and Y be two continuous rv’s with joint pdf
f (x, y) and marginal X pdf fX(x).  Then for any X
value x for which fX(x) > 0, the conditional 
probability density function of Y given that X = x
is

|
( , )( | )

( )Y X
X

f x yf y x y
f x

= − ∞ < < ∞

If X and Y are discrete, replacing pdf’s by pmf’s
gives the conditional probability mass function 
of Y when X = x.
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Marginal probability distributions (Cont.)

If X and Y are discrete random variables with joint 
probability mass function fXY(x,y), then the marginal 
probability mass function of X and Y are

where Rx denotes the set of all points in the range of 
(X, Y) for which X = x and Ry denotes the set of all 
points in the range of (X, Y) for which Y = y

∑===
xR

XYX YXfxXPxf ),()()(

∑===
Ry

XYY YXfyYPyf ),()()(
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Mean and Variance

If the marginal probability distribution of X has the probability 
function f(x), then

R = Set of all points in the range of (X,Y).

Example 5-4.

∑∑∑ ∑∑ =







===

x R
XY

x R
XY

x
XX

xx

yxxfyxfxxxfXE ),(),()()( µ

∑=
R

XY yxxf ),(

),()(),()(

),()()()()(
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∑∑∑

∑ ∑∑
−=−=

−=−==

µµ

µµσ
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Joint probability mass function – example
The joint density, P{X,Y}, of the number of minutes waiting to catch the first fish, X , 
and the number of minutes waiting to catch the second fish, Y, is given below. 

P {X = i,Y = k }                    k 
1                 2             3 

          Row Sum 
          P{ X = i } 

           1 
 i         2 
           3 

0.01          0.02        0.08 
0.01          0.02        0.08  
0.07          0.08        0.63  

             0.11 
             0.11 
             0.78 

Column Sum P 
{Y =k } 

0.09          0.12        0.79              1.00 

• The (joint) chance of waiting 3 minutes to catch the first fish and 3 minutes to 
catch the second fish is: 

• The (marginal) chance of waiting 3 minutes to catch the first fish is: 
• The (marginal) chance of waiting 2 minutes to catch the first fish is (circle all 

that are correct): 
• The chance of waiting at least two minutes to catch the first fish is (circle 

none, one or more): 
• The chance of waiting at most two minutes to catch the first fish and at most 

two minutes to catch the second fish is (circle none, one or more): 
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Conditional probability

Given discrete random variables X and Y with joint 
probability mass function fXY(X,Y), the conditional 
probability mass function of Y given X=x is

fY|x(y|x) = fY|x(y) = fXY(x,y)/fX(x) for fX(x) > 0
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Conditional probability (Cont.)

Because a conditional probability mass function fY|x(y) is a 
probability mass function for all y in Rx, the following 
properties are satisfied:
(1) fY|x(y) ≥ 0

(2) fY|x(y) = 1

(3) P(Y=y|X=x) = fY|x(y)

∑
xR
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Conditional probability (Cont.)

Let Rx denote the set of all points in the range of 
(X,Y) for which X=x.  The conditional mean of Y 
given X=x, denoted as E(Y|x) or µY|x, is

And the conditional variance of Y given X=x, 
denoted as V(Y|x) or σ2

Y|x is

∑=
xR

yyfE )()x|Y( x|Y

∑∑ −=−=
xx RR

yfyyfyV 2
x|Yx|Y

2
x|Y

2
x|Y )()()()x|Y( µµ
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Independence

For discrete random variables X and Y, if any one of 
the following properties is true, the others are also 
true, and X and Y are independent.

(1) fXY(x,y) = fX(x) fY(y) for all x and y

(2) fY|x(y) = fY(y) for all x and y with fX(x) > 0

(3) fX|y(y) = fX(x) for all x and y with fY(y) > 0

(4) P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B) for any 
sets A and B in the range of X and Y respectively.
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5.2

Expected Values, 
Covariance, and 

Correlation
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Expected Value
Let X and Y be jointly distributed rv’s with pmf
p(x, y) or pdf f (x, y) according to whether the 
variables are discrete or continuous.  Then the 
expected value of a function h(X, Y), denoted 
E[h(X, Y)] or

is ( , ) ( , )

( , ) ( , )

x y
h x y p x y

h x y f x y dxdy
∞ ∞

−∞ −∞

 ⋅

= 
 ⋅


∑∑

∫ ∫

discrete

continuous

( , )h X Yµ
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Covariance
The covariance between two rv’s X and Y is

( )( ) ( , )

( )( ) ( , )

X Y
x y

X Y

x y p x y

x y f x y dxdy

µ µ

µ µ
∞ ∞

−∞ −∞

 − −

= 
 − −


∑∑

∫ ∫

discrete

continuous

( ) ( )( )Cov , X YX Y E X Yµ µ = − − 
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Short-cut Formula for Covariance

( ) ( )Cov , X YX Y E XY µ µ= − ⋅
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Correlation

The correlation coefficient of X and Y, 
denoted by Corr(X, Y), 
defined by

, , or just , isX Yρ ρ

( )
,

Cov ,
X Y

X Y

X Y
ρ

σ σ
=

⋅
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Correlation Proposition

1. If a and c are either both positive or both          
negative, Corr(aX + b, cY + d) = Corr(X, Y)

2. For any two rv’s X and Y,   
1 Corr( , ) 1.X Y− ≤ ≤
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Correlation Proposition

1. If X and Y are independent, then                 
but           does not imply independence.

2.
for some numbers a and b with  

0,ρ =
0ρ =

1 or 1 iff  Y aX bρ = − = +
0.a ≠
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5.3

Statistics                 
and their        

Distributions
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Statistic

A statistic is any quantity whose value can be 
calculated from sample data.  Prior to obtaining 
data, there is uncertainty as to what value of any 
particular statistic will result.  A statistic is a 
random variable denoted by an uppercase letter; 
a lowercase letter is used to represent the 
calculated or observed value of the statistic.
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Random Samples

The rv’s X1,…,Xn are said to form a (simple

random sample of size n if

1. The Xi’s are independent rv’s.

2. Every Xi has the same probability 
distribution.
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Simulation Experiments
The following characteristics must be specified:

1. The statistic of interest.

2. The population distribution.

3. The sample size n.

4. The number of replications k.
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5.4

The Distribution          
of the                   

Sample Mean
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Using the Sample Mean

Let X1,…, Xn be a random sample from a 
distribution with mean value     and standard 
deviation       Then

µ
.σ

( )
( ) 22

1.

2.

X

X

E X

V X n

µ µ

σσ

= =

= =

In addition, with To = X1 +…+ Xn,
( ) ( ) 2,  , and .

oo o TE T n V T n nµ σ σ σ= = =
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Normal Population Distribution

Let X1,…, Xn be a random sample from a 
normal distribution with mean value     and 
standard deviation       Then for any n,             
is normally distributed, as is To.

µ
.σ X
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The Central Limit Theorem

Let X1,…, Xn be a random sample from a 
distribution with mean value     and variance       
Then if n sufficiently large,      has 
approximately a normal distribution with

X
µ 2.σ

22 and ,X X n
σµ µ σ= = and To also has

approximately a normal distribution with
2,  .

o oT Tn nµ µ σ σ= =
n, the better the approximation.

The larger the value of
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The Central Limit Theorem

µ

Population 
distribution

small to 
moderate n
X

large nX
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Rule of Thumb

If n > 30, the Central Limit Theorem can 
be used.

Stat 110A, UCLA, Ivo DinovSlide 38

Approximate Lognormal Distribution

Let X1,…, Xn be a random sample from a 
distribution for which only positive values are 
possible [P(Xi > 0) = 1].  Then if n is 
sufficiently large, the product Y = X1X2…Xn has 
approximately a lognormal distribution.
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5.5

The Distribution          
of a                      

Linear Combination
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Linear Combination

Given a collection of n random variables 
X1,…, Xn and n numerical constants a1,…,an, 
the rv

is called a linear combination of the Xi’s.

1 1
1

...
n

n n i i
i

Y a X a X a X
=

= + + =∑
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Expected Value of a Linear 
Combination

Let X1,…, Xn have mean values                              
and variances of                        respectively

1 2, ,..., nµ µ µ
2 2 2
1 2, ,..., ,nσ σ σ

Whether or not the Xi’s are independent,

( ) ( ) ( )1 1 1 1... ...n n n nE a X a X a E X a E X+ + = + +

1 1 ... n na aµ µ= + +
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Variance of a Linear Combination

( ) ( ) ( )2 2
1 1 1 1... ...n n n nV a X a X a V X a V X+ + = + +

If X1,…, Xn are independent,

2 2 2 2
1 1 ... n na aσ σ= + +

and

1 1

2 2 2 2
... 1 1 ...

n na X a X n na aσ σ σ+ + = + +
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Variance of a Linear Combination

( ) ( )1 1
1 1

... Cov ,
n n

n n i j i j
i j

V a X a X a a X X
= =

+ + =∑∑

For any X1,…, Xn,

Stat 110A, UCLA, Ivo DinovSlide 44

Difference Between Two Random 
Variables

( ) ( ) ( )1 2 1 2E X X E X E X− = −

and, if X1 and X2 are independent,

( ) ( ) ( )1 2 1 2V X X V X V X− = +
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Difference Between Normal Random 
Variables

If X1, X2,…Xn are independent, normally 
distributed rv’s, then any linear combination 
of the Xi’s also has a normal distribution.  The 
difference X1 – X2 between two independent, 
normally distributed variables is itself 
normally distributed.
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Central Limit Theorem:
When sampling from almost any distribution,

is approximately Normally distributed in large samples.X 

Central Limit Theorem – heuristic formulation

Show Sampling Distribution Simulation Applet:
file:///C:/Ivo.dir/UCLA_Classes/Winter2002/AdditionalInstructorAids/
SamplingDistributionApplet.html
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Independence

For discrete random variables X and Y, if any one of 
the following properties is true, the others are also 
true, and X and Y are independent.

(1) fXY(x,y) = fX(x) fY(y) for all x and y

(2) fY|x(y) = fY(y) for all x and y with fX(x) > 0

(3) fX|y(y) = fX(x) for all x and y with fY(y) > 0

(4) P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B) for any 
sets A and B in the range of X and Y respectively.
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For the sample mean calculated from a random sample, 
E(    )  = µ and SD(      ) =          , provided 

= (X1+X2+ … + Xn)/n, and Xk~N(µ, σ). Then

~ N(µ,      ). And variability from sample to sample 
in the sample-means is given by the variability of the 
individual observations divided by the square root of 
the sample-size. In a way, averaging decreases variability.

X n
σ

Recall we looked at the sampling distribution of

n
σ

X 

X 
X 
X 
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Central Limit Effect –
Histograms of sample means

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

n = 1

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3
n = 2

Triangular
Distribution

Sample means from sample size
n=1, n=2, 

500 samples

Area = 1

2

1

0
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2

1

0

Y=2 X
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Central Limit Effect -- Histograms of sample means
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Triangular Distribution
Sample sizes n=4, n=10
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Central Limit Effect –
Histograms of sample means
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Y = X
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Central Limit Effect -- Histograms of sample means
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Uniform Distribution
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Central Limit Effect –
Histograms of sample means

Sample means from sample size
n=1, n=2, 

500 samples
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Central Limit Effect -- Histograms of sample means
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Central Limit Effect –
Histograms of sample means

Sample means from sample size
n=1, n=2, 

500 samples
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Central Limit Effect -- Histograms of sample means
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Central Limit Theorem:
When sampling from almost any distribution,

is approximately Normally distributed in large samples.X 

Central Limit Theorem – heuristic formulation

Show Sampling Distribution Simulation Applet:
file:///C:/Ivo.dir/UCLA_Classes/Winter2002/AdditionalInstructorAids/
SamplingDistributionApplet.html
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Let                              be a sequence of independent
observations from one specific random process. Let    
and                      and                        and both be 
finite (                           ). If                    , sample-avg,

Then      has a distribution which approaches 
N(µ, σ2/n), as            .

Central Limit Theorem –
theoretical formulation

{ },...,...,X,XX
k21

µ=)(XE σ=)(XSD
∞<∞<< ||  ;0 µσ ∑

=
=

n

k k
X

nn
X

1

1

X
∞→n


