UCLA STAT 110 A

Applied Probability & Statistics for Engineers

•Instructor: Ivo Dinov,

Asst. Prof. In Statistics and Neurology

• Teaching Assistant: Neda Farzinnia, UCLA Statistics

University of California, Los Angeles, Spring 2004 http://www.stat.ucla.edu/~dinov/

Stat 110A, UCLA, Ivo Dinov

Slide 1

Chapter 5

Joint Probability Distributions and Random Samples

Slide 2 Seattle USE to Discour

5.1

Jointly Distributed Random Variables

Slide 3

tide 3 Stat 110A, UCLA, Ivo Dinov

Joint Probability Mass Function

Let X and Y be two discrete rv's defined on the sample space of an experiment. The *joint* probability mass function p(x, y) is defined for each pair of numbers (x, y) by

$$p(x, y) = P(X = x \text{ and } Y = y)$$

Let A be the set consisting of pairs of (x, y) values, then

$$P[(X,Y) \in A] = \sum_{(x,y) \in A} p(x,y)$$

Slide 4 Stat 110A UCLA Iva Dinav

Marginal Probability Mass Functions

The marginal probability mass functions of X and Y, denoted $p_X(x)$ and $p_Y(y)$ are given by

$$p_X(x) = \sum_{y} p(x, y)$$
 $p_Y(y) = \sum_{x} p(x, y)$

Stat 1104 UCL4 for Discov

Joint Probability Density Function

Let X and Y be continuous rv's. Then f(x, y) is a *joint probability density function* for X and Y if for any two-dimensional set A

$$P[(X,Y) \in A] = \iint_A f(x,y) dx dy$$

If A is the two-dimensional rectangle $\{(x, y) : a \le x \le b, c \le y \le d\}$,

$$P[(X,Y) \in A] = \int_{a}^{b} \int_{c}^{d} f(x,y) dy dx$$

Marginal Probability Density Functions

The marginal probability density functions of X and Y, denoted $f_{\nu}(x)$ and $f_{\nu}(y)$, are given by

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy \quad \text{for } -\infty < x < \infty$$

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx \quad \text{for } -\infty < y < \infty$$

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$
 for $-\infty < y < \infty$

Independent Random Variables

Two random variables X and Y are said to be *independent* if for every pair of x and y values

$$p(x, y) = p_X(x) \cdot p_Y(y)$$

when X and Y are discrete or

$$f(x, y) = f_X(x) \cdot f_Y(y)$$

when X and Y are continuous. If the conditions are not satisfied for all (x, y) then X and Y are dependent.

More Than Two Random Variables

If $X_1, X_2, ..., X_n$ are all discrete random variables, the joint pmf of the variables is the function

$$p(x_1,...,x_n) = P(X_1 = x_1,...,X_n = x_n)$$

If the variables are continuous, the joint pdf is the function f such that for any n intervals $[a_1,b_1]$, ..., $[a_n, b_n], P(a_1 \le X_1 \le b_1, ..., a_n \le X_n \le b_n)$

$$= \int_{a_1}^{b_1} \dots \int_{a_n}^{b_n} f(x_1, \dots, x_n) dx_n \dots dx_1$$

Independence – More Than Two Random Variables

The random variables $X_1, X_2, ..., X_n$ are *independent* if for every subset $X_i, X_i, ..., X_i$ of the variables, the joint pmf or pdf of the subset is equal to the product of the marginal pmf's or pdf's.

Conditional Probability Function

Let X and Y be two continuous rv's with joint pdf f(x, y) and marginal X pdf $f_X(x)$. Then for any X value x for which $f_x(x) > 0$, the conditional probability density function of Y given that X = x

 $f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} - \infty < y < \infty$

If X and Y are discrete, replacing pdf's by pmf's gives the conditional probability mass function of Y when X = x.

Marginal probability distributions (Cont.)

 If X and Y are discrete random variables with joint probability mass function f_{XY}(x,y), then the marginal probability mass function of X and Y are

$$f_X(x) = P(X = x) = \sum_{R_x} f_{XY}(X, Y)$$

$$f_Y(y) = P(Y = y) = \sum_{R_Y} f_{XY}(X, Y)$$

where R_x denotes the set of all points in the range of (X, Y) for which X = x and Ry denotes the set of all points in the range of (X, Y) for which Y = y

Slide 13 Stat 1104 UCLA Iva Dina

Mean and Variance

 If the marginal probability distribution of X has the probability function f(x), then

$$E(X) = \mu_X = \sum_{x} x f_X(x) = \sum_{x} x \left(\sum_{R_x} f_{XY}(x, y) \right) = \sum_{x} \sum_{R_x} x f_{XY}(x, y)$$
$$= \sum_{R} x f_{XY}(x, y)$$

$$V(X) = \sigma^{2}_{X} = \sum_{x} (x - \mu_{X})^{2} f_{X}(x) = \sum_{x} (x - \mu_{X})^{2} \sum_{R_{x}} f_{XY}(x, y)$$

- $= \sum_{x} \sum_{R_x} (x \mu_X)^2 f_{XY}(x, y) = \sum_{R} (x \mu_X)^2 f_{XY}(x, y)$ R = Set of all points in the range of (X,Y).
- Example 5-4.

Clide 14

Joint probability mass function – example

The joint density, $P\{X,Y\}$, of the number of minutes waiting to catch the first fish, X, and the number of minutes waiting to catch the second fish. Y, is given below.

$P \{X = i, Y = k \}$		k		Row Sum
	1	2	3	$P\{X=i\}$
1	0.01	0.02	0.08	0.11
i 2	0.01	0.02	0.08	0.11
3	0.07	0.08	0.63	0.78
Column Sum P	0.09	0.12	0.79	1.00
{ Y = k }				

- The (joint) chance of waiting 3 minutes to catch the first fish and 3 minutes to catch the second fish is:
- The (marginal) chance of waiting 3 minutes to catch the first fish is:
- The (marginal) chance of waiting 2 minutes to catch the first fish is (circle all that are correct):
- The chance of waiting at least two minutes to catch the first fish is (circle none, one or more):
- The chance of waiting at most two minutes to catch the first fish and at most two minutes to catch the second fish is (circle none, one or more);

Slide 15 Stat 1104. UCL4. Ivo Dinor

Conditional probability

 Given discrete random variables X and Y with joint probability mass function f_{XY}(X,Y), the conditional probability mass function of Y given X=x is

$$f_{Y|X}(y|X) = f_{Y|X}(y) = f_{XY}(x,y)/f_X(x)$$
 for $f_X(x) > 0$

Slide 16 Stat 1104 UCL4 Ivo Dinor

Conditional probability (Cont.)

• Because a conditional probability mass function $f_{Y|x}(y)$ is a probability mass function for all y in R_x , the following properties are satisfied:

(1)
$$f_{Y|_{Y}}(y) \ge 0$$

$$(2) \qquad \sum_{R_x} f_{Y|x}(y) = 1$$

(3) $P(Y=y|X=x) = f_{Y|x}(y)$

Slide 17 Stat 1104, UCLA, Ivo Dinov

Conditional probability (Cont.)

 Let R_x denote the set of all points in the range of (X,Y) for which X=x. The conditional mean of Y given X=x, denoted as E(Y|x) or μ_{Y|x}, is

$$E(\mathbf{Y} \mid \mathbf{x}) = \sum_{R_{\mathbf{x}}} y f_{\mathbf{Y} \mid \mathbf{x}}(y)$$

 And the conditional variance of Y given X=x, denoted as V(Y|x) or σ²_{Y|x} is

$$V(Y \mid x) = \sum_{R_x} (y - \mu_{Y \mid x})^2 f_{Y \mid x}(y) = \sum_{R_x} y^2 f_{Y \mid x}(y) - \mu_{Y \mid x}^2$$

Slide 19 Stat 110A. UCLA. Ivo Dinov

Independence

- For discrete random variables X and Y, if any one of the following properties is true, the others are also true, and X and Y are independent.
 - (1) $f_{XY}(x,y) = f_X(x) f_Y(y)$ for all x and y
 - (2) $f_{Y|x}(y) = f_Y(y)$ for all x and y with $f_X(x) > 0$
 - (3) $f_{X|y}(y) = f_X(x)$ for all x and y with $f_Y(y) > 0$
 - (4) $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$ for any sets A and B in the range of X and Y respectively.

Stat 1104 UCLA Iva Dinov

5.2

Expected Values, Covariance, and Correlation

Slide 21 Stat 110A, UCLA, Ivo Dinov

Expected Value

Let X and Y be jointly distributed rv's with pmf p(x, y) or pdf f(x, y) according to whether the variables are discrete or continuous. Then the expected value of a function h(X, Y), denoted E[h(X, Y)] or $\mu_{h(X, Y)}$

is
$$= \begin{cases} \sum_{x} \sum_{y} h(x, y) \cdot p(x, y) & \text{discrete} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y) \cdot f(x, y) dx dy & \text{continuous} \end{cases}$$

Covariance

The *covariance* between two rv's X and Y is

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

$$= \begin{cases} \sum_{x} \sum_{y} (x - \mu_X)(y - \mu_Y) p(x, y) & \text{discrete} \\ \sum_{x} \sum_{y} (x - \mu_X)(y - \mu_Y) f(x, y) dx dy & \text{continuous} \end{cases}$$

Slide 23 Stat 1104, UCLA, Ivo Dinov

Short-cut Formula for Covariance

$$Cov(X,Y) = E(XY) - \mu_X \cdot \mu_Y$$

Slide 24 Stat 110A, UCLA, Ivo Dinor

Correlation

The *correlation coefficient* of X and Y, denoted by Corr(X, Y), $\rho_{X,Y}$, or just ρ , is defined by

$$\rho_{X,Y} = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \cdot \sigma_Y}$$

lide 25 Stat 110A, UCLA, Ivo Dinor

Correlation Proposition

- 1. If a and c are either both positive or both negative, Corr(aX + b, cY + d) = Corr(X, Y)
- 2. For any two rv's X and Y, $-1 \le Corr(X, Y) \le 1$.

Slide 26 Stat 110A. UCLA. Ivo Dinov

Correlation Proposition

- 1. If X and Y are independent, then $\rho = 0$, but $\rho = 0$ does not imply independence.
- 2. $\rho = 1$ or -1 iff Y = aX + b for some numbers a and b with $a \ne 0$.

ilide 27 Stat 110A, UCLA, Ivo Dinov

5.3

Statistics and their Distributions

Slide 28 Stat 110A UCLA Iva Dinav

Statistic

A *statistic* is any quantity whose value can be calculated from sample data. Prior to obtaining data, there is uncertainty as to what value of any particular statistic will result. A statistic is a random variable denoted by an uppercase letter; a lowercase letter is used to represent the calculated or observed value of the statistic.

Slide 29 Stat 1104. UCLA. Ivo Dinov

Random Samples

The rv's $X_1,...,X_n$ are said to form a (simple random sample of size n if

- 1. The X_i 's are independent rv's.
- 2. Every X_i has the same probability distribution.

Slide 30 Stat 110A, UCLA, Ivo Dino

Simulation Experiments

The following characteristics must be specified:

- 1. The statistic of interest.
- 2. The population distribution.
- 3. The sample size n.
- 4. The number of replications k.

Slide 31 Stat HELL for Discon

5.4
The Distribution of the

Sample Mean

Slide 32

Using the Sample Mean

Let $X_1, ..., X_n$ be a random sample from a distribution with mean value μ and standard deviation σ . Then

$$1. E(\overline{X}) = \mu_{\overline{X}} = \mu$$

$$2.V(\overline{X}) = \sigma_{\overline{X}}^2 = \sigma^2 / n$$

In addition, with $T_o = X_1 + ... + X_n$, $E(T_o) = n\mu$, $V(T_o) = n\sigma^2$, and $\sigma_{T_o} = \sqrt{n\sigma}$.

Slide 33 Stat 1104 UCLA Iva Dinav

Normal Population Distribution

Let $X_1, ..., X_n$ be a random sample from a normal distribution with mean value μ and standard deviation σ . Then for any n, \overline{X} is normally distributed, as is T_o .

Slide 34 Stat 1104 UCLA Iva Dinov

The Central Limit Theorem

Let $X_1, ..., X_n$ be a random sample from a distribution with mean value μ and variance σ^2 . Then if n sufficiently large, \overline{X} has approximately a normal distribution with $\mu_{\overline{X}} = \mu$ and $\sigma_{\overline{X}}^2 = \sigma^2/n$, and T_o also has approximately a normal distribution with $\mu_{T_o} = n\mu$, $\sigma_{T_o} = n\sigma^2$. The larger the value of n, the better the approximation.

Slide 35 Stat 1104 UCL4 for Dinay

Rule of Thumb

If n > 30, the Central Limit Theorem can be used.

Slide 37 Stat 110A, UCLA, Ivo Dinov

Approximate Lognormal Distribution

Let $X_1, ..., X_n$ be a random sample from a distribution for which only positive values are possible [P(Xi > 0) = 1]. Then if n is sufficiently large, the product $Y = X_1X_2...X_n$ has approximately a lognormal distribution.

Slide 38 Stat 110A, UCLA, Ivo Dino

5.5

The Distribution of a Linear Combination

Slide 39 Stat 1104 UCLA Iva Dinav

Linear Combination

Given a collection of n random variables $X_1, ..., X_n$ and n numerical constants $a_1, ..., a_n$, the ry

$$Y = a_1 X_1 + ... + a_n X_n = \sum_{i=1}^{n} a_i X_i$$

is called a *linear combination* of the X_i 's.

Slide 40 Stat 1104 UCLA Ivo Dinos

Expected Value of a Linear Combination

Let $X_1,...,X_n$ have mean values $\mu_1,\mu_2,...,\mu_n$ and variances of $\sigma_1^2,\sigma_2^2,...,\sigma_n^2$, respectively

Whether or not the X_i 's are independent,

$$E(a_1X_1 + ... + a_nX_n) = a_1E(X_1) + ... + a_nE(X_n)$$

= $a_1\mu_1 + ... + a_n\mu_n$

Slide 41 Stat 1104 UCL4 for Discov

Variance of a Linear Combination

If $X_1, ..., X_n$ are independent,

$$V(a_1X_1 + ... + a_nX_n) = a_1^2V(X_1) + ... + a_n^2V(X_n)$$

$$=a_1^2\sigma_1^2 + ... + a_n^2\sigma_n^2$$

and

$$\sigma_{a_1X_1+...+a_nX_n} = \sqrt{a_1^2\sigma_1^2 + ... + a_n^2\sigma_n^2}$$

lide 42 Stat 110A. UCLA. Ivo Dinov

Variance of a Linear Combination

For any X_1, \ldots, X_n ,

$$V(a_1X_1 + ... + a_nX_n) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j \text{Cov}(X_i, X_j)$$

Slide 43 Stat 110A, UCLA, Iva Dinay

Difference Between Two Random Variables

$$E(X_1 - X_2) = E(X_1) - E(X_2)$$

and, if X_1 and X_2 are independent,

$$V(X_1 - X_2) = V(X_1) + V(X_2)$$

Slide 44 Stat 1104, UCLA, Iva Dinav

Difference Between Normal Random Variables

If $X_1, X_2, ... X_n$ are independent, normally distributed rv's, then any linear combination of the X_i 's also has a normal distribution. The difference $X_1 - X_2$ between two independent, normally distributed variables is itself normally distributed.

Slide 45 Stat 1104 UCLA Ivo Dino

Central Limit Theorem – heuristic formulation

Central Limit Theorem:

When sampling from almost any distribution, \overline{X} is approximately Normally distributed in large samples.

Show Sampling Distribution Simulation Applet: file:///C/Ivo.dir/UCLA_Classes/Winter2002/AdditionalInstructorAids/ Sampling DistributionApplet.html

Slide 46 Stat 110A UCLA Iva Dinav

Independence

- For discrete random variables X and Y, if any one of the following properties is true, the others are also true, and X and Y are independent.
 - (1) $f_{XY}(x,y) = f_X(x) f_Y(y)$ for all x and y
 - (2) $f_{Y|x}(y) = f_Y(y)$ for all x and y with $f_X(x) > 0$
 - (3) $f_{X|y}(y) = f_X(x)$ for all x and y with $f_Y(y) > 0$
 - (4) $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$ for any sets A and B in the range of X and Y respectively.

Slide 47 Start 104 UCL4 Iva Dinas

Recall we looked at the sampling distribution of \overline{X} • For the sample mean calculated from a random sample, $E(\overline{X}) = \mu$ and $SD(\overline{X}) = \sigma / \sqrt{n}$, provided $\overline{X} = (X_1 + X_2 + ... + X_n)/n$, and $X_k \sim N(\mu, \sigma)$. Then • $\overline{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$. And variability from sample to sample in the *sample-means* is given by the variability of the individual observations divided by the square root of the sample-size. In a way, averaging decreases variability.

Central Limit Theorem – theoretical formulation

Let $\{X_1, X_2, ..., X_k, ...\}$ be a sequence of independent observations from one specific random process. Let and $E(X) = \mu$ and $SD(X) = \sigma$ and both be finite $(0 < \sigma < \infty; |\mu| < \infty)$. If $\overline{X} = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} X_k$ sample-avg,

Then \overline{X} has a <u>distribution</u> which approaches $N(\mu, \sigma^2/n)$, as $n \to \infty$.

Slide 59 Stat 1104, UCLA, Ivo Dinor