Chapter 5: JOINT PROBABILITY DISTRIBUTIONS

Part 1: Joint Discrete Probability Distributions...
 Marginal Distributions
 Conditional Distributions Independence

Sections 5-1.1 to 5-1.4

Recall a discrete probability distribution (or probability mass function)

$$
\begin{array}{l|l|l|l}
x & 0 & 1 & 2 \\
\hline f(x) & 0.50 & 0.20 & 0.30
\end{array}
$$

Sometimes we're simultaneously interested in two or more discrete variables in a random experiment.

Examples

- Year in college vs. Number of credits taken
- Count of plants grown in a tray vs. Count of healthy plants
- Number of cigarettes smoked per day vs. Age of cancer onset

In general, if X and Y are two random variables, the probability distribution that defines their simultaneous behavior is called a joint probability distribution.

If X and Y are discrete, this distribution can be described with a joint probability mass function (this section).

If X and Y are continous, this distribution can be described with a joint probability density function (next section).

- Example: Plastic covers for CDs

Measurements for the length and width of a rectangular plastic covers for CDs are rounded to the nearest $m m$ (so they are discrete).

Let X denote the length and
Y denote the width.

The possible values of X are 129, 130, and 131 mm . The possible values of Y are 15 and 16 mm .

Both X and Y are discrete.

There are 6 possible pairs (X, Y).
We show the probability for each pair in the following table:

The sum of all the probabilities is 1.0 .
The combination with the highest probability is $(130,15)$.

The combination with the lowest probability is $(131,16)$.

The joint probability mass function is the function $f_{X Y}(x, y)=P(X=x, Y=y)$. For example, we have $f_{X Y}(129,15)=0.12$.

If we are given a joint probability distribution for X and Y, we can obtain the individual probability distribution for X or for $Y \ldots$

- Example: Continuing plastic covers for CDs

Find the probability that a CD cover has length of 129 mm (i.e. $\mathrm{X}=129$).

$$
\begin{gathered}
\mathrm{x}=\text { length } \\
\begin{array}{|l|lll|}
& 129 & 130 & 131 \\
\cline { 1 - 4 } & \mathrm{y}=\text { width } \\
15 & \mathbf{0 . 1 2} & 0.42 & 0.06 \\
16 & \mathbf{0 . 0 8} & 0.28 & 0.04 \\
\hline
\end{array} \\
\begin{aligned}
P(X=129) & =\quad P(X=129 \text { and } Y=15) \\
& +P(X=129 \text { and } Y=16) \\
& =0.12+0.08=0.20
\end{aligned}
\end{gathered}
$$

What is the probability distribution of X ?

	$\mathrm{x}=$ length			
		129	130	131
$\mathrm{y}=$ width	15	0.12	0.42	0.06
	16	0.08	0.28	0.04
column totals		0.20		0.10

The probability distribution for X appears in the column totals...

$$
\begin{array}{l|l|l|l}
x & 129 & 130 & 131 \\
\hline f_{X}(x) & 0.20 & 0.70 & 0.10
\end{array}
$$

* NOTE: We've used a subscript X in the probability mass function of X , or $f_{X}(x)$, for clarification since we're considered more than one variable at a time now.

We can do the same for the Y random variable.
row

	$\mathrm{x}=$ length			totals		
		129	130	131		
	$\mathrm{y}=$ width	15	0.12	0.42	0.06	$\mathbf{0 . 6 0}$
	16	0.08	0.28	0.04	$\mathbf{0 . 4 0}$	
	$\mathbf{0 . 2 0}$	$\mathbf{0 . 7 0}$	$\mathbf{0 . 1 0}$	$\mathbf{1}$		

$$
\begin{array}{l|l|l}
y & 15 & 16 \\
\hline f_{Y}(y) & 0.60 & 0.40
\end{array}
$$

Because the the probability mass functions for X and Y appear in the margins of the table (i.e. column and row totals), they are often referred to as the marginal distributions for X and Y.

When there are two random variables of interest, we also use the term bivariate probability distribution or bivariate distribution to refer to the joint distribution.

- Joint Probability Mass Function

The joint probability mass function of the discrete random variables X and Y, denoted as $f_{X Y}(x, y)$, satisfies
(1) $f_{X Y}(x, y) \geq 0$
(2) $\sum_{x} \sum_{y} f_{X Y}(x, y)=1$
(3) $f_{X Y}(x, y)=P(X=x, Y=y)$

- Marginal Probability Mass Function

If X and Y are discrete random variables with joint probability mass function $f_{X Y}(x, y)$, then the marginal probability mass functions of X and Y are

$$
f_{X}(x)=\sum_{y} f_{X Y}(x, y)
$$

and

$$
f_{Y}(y)=\sum_{x} f_{X Y}(x, y)
$$

where the sum for $f_{X}(x)$ is over all points in the range of (X, Y) for which $X=x$ and the sum for $f_{Y}(y)$ is over all points in the range of (X, Y) for which $Y=y$.

When asked for $E(X)$ or $V(X)$ in a joint probability distribution problem, first calculate the marginal distribution $f_{X}(x)$ and work it as we did in chapter 3 for the univariate case (i.e. for a single random variable).

- Example: Batteries

Suppose that 2 batteries are randomly chosen without replacement from the following group of 12 batteries:

3 new
4 used (working)
5 defective

Let X denote the number of new batteries chosen.

Let Y denote the number of used batteries chosen.
a) Find $f_{X Y}(x, y)$
\{i.e. the joint probability distribution\}.

ANS:
Though X can take on values 0,1 , and 2 , and Y can take on values 0,1 , and 2 , when we consider them jointly, $X+Y \leq 2$. So, not all combinations of (X, Y) are possible.

CASE: no new, no used (so all defective)

$$
f_{X Y}(0,0)=\frac{\binom{5}{2}}{\binom{12}{2}}=10 / 66
$$

CASE: no new, 1 used

$$
f_{X Y}(0,1)=\frac{\binom{4}{1}\binom{5}{1}}{\binom{12}{2}}=20 / 66
$$

CASE: no new, 2 used

$$
f_{X Y}(0,2)=\frac{\binom{4}{2}}{\binom{12}{2}}=6 / 66
$$

CASE: 1 new, no used

$$
f_{X Y}(1,0)=\frac{\binom{3}{1}\binom{5}{1}}{\binom{12}{2}}=15 / 66
$$

CASE: 2 new, no used

$$
f_{X Y}(2,0)=\frac{\binom{3}{2}}{\binom{12}{2}}=3 / 66
$$

CASE: 1 new, 1 used

$$
f_{X Y}(1,1)=\frac{\binom{3}{1}\binom{4}{1}}{\binom{12}{2}}=12 / 66
$$

$\mathrm{x}=$ number of new chosen				
		0	1	2
$\mathrm{y}=$ number of	0	$10 / 66$	$15 / 66$	$3 / 66$
used	1	$20 / 66$	$12 / 66$	
chosen	2	$6 / 66$		

There are 6 possible (X, Y) pairs.
And, $\sum_{x} \sum_{y} f_{X Y}(x, y)=1$.

Conditional Probability Distributions

As we saw before, we can compute the conditional probability of an event given information of another event.

As stated before,

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- Example: Continuing the plastic covers...

$\mathrm{y}=$ width	$\mathrm{x}=$ length					totals
		129	9	130	131	
	15	0.1	2	0.42	0.06	0.60
	16	0.0	. 08	0.28	0.04	0.40
column totals			20	0.70	0.10	1

a) Find the probability that a CD cover has a length of 130 mm GIVEN the width is 15 mm .

$\mathrm{y}=$ width	$\mathrm{x}=$ length				$\begin{array}{r} \text { row } \\ \text { totals } \\ \hline \end{array}$
		129	130	131	
	15	0.12	0.42	0.06	0.60
	16	0.08	0.28	0.04	0.40
column totals		0.20	0.70	0.10	1

$$
\text { ANS: } \begin{aligned}
P(X=130 \mid Y & =15)=\frac{P(X=130, Y=15)}{P(Y=15)} \\
& =0.42 / 0.60=0.70
\end{aligned}
$$

b) Find the conditional distribution of X given $Y=15$.

$$
\begin{aligned}
& P(X=129 \mid Y=15)=0.12 / 0.60=0.20 \\
& P(X=130 \mid Y=15)=0.42 / 0.60=0.70 \\
& P(X=131 \mid Y=15)=0.06 / 0.60=0.10
\end{aligned}
$$

Once you're GIVEN that $Y=15$, you're in a 'different space'.

We are now considering only the CD covers with a width of 15 mm . For this subset of the covers, how are the lengths (X) distributed.

The conditional distribution of X, or $f_{X \mid Y}(x)$, given $Y=15$:

$$
\begin{array}{l|ccc}
x & 129 & 130 & 131 \\
\hline f_{X \mid 15}(x) & 0.20 & 0.70 & 0.10
\end{array}
$$

Notice that the sum of these probabilities is 1 , and this is a legitimate probability distribution .

* NOTE: Again, we use the subscript $X \mid Y$ for clarity to denote that this is a conditional distribution.

- Conditional Probability Mass Function

Given discrete random variables X and Y with joint probability mass function $f_{X Y}(x, y)$ the conditional probability mass function of Y given $\mathrm{X}=\mathrm{x}$ is

$$
f_{Y \mid X}(y)=\frac{f_{X Y}(x, y)}{f_{X}(x)} \quad \text { for } \quad f_{X}(x)>0
$$

The conditional probability is the joint probability over the marginal probability.

Notice that we can define $f_{X \mid Y}(x)$ in a similar manner if we are interested in that conditional distribution.

Because a conditional probability mass function $f_{Y \mid X}(y)$ is a probability mass function, the following properties are satisfied:
(1) $f_{Y \mid X}(y) \geq 0$
(2) $\sum_{y} f_{Y \mid X}(y)=1$
(3) $f_{Y \mid X}(y)=P(Y=y \mid X=x)$

- Conditional Mean and Variance

The conditional mean of Y given $\mathrm{X}=\mathrm{x}$, denoted as $E(Y \mid x)$ or $\mu_{Y \mid x}$ is

$$
\begin{aligned}
E(Y \mid x) & =\sum_{y} y f_{Y \mid X}(y) \\
& =\mu_{Y \mid x}
\end{aligned}
$$

and the conditional variance of Y given $\mathrm{X}=\mathrm{x}$, denoted as $V(Y \mid x)$ or $\sigma_{Y \mid x}^{2}$ is

$$
\begin{aligned}
V(Y \mid x) & =\sum_{y}\left(y-\mu_{Y \mid x}\right)^{2} f_{Y \mid X}(y) \\
& =\sum_{y} y^{2} f_{Y \mid X}(y)-\mu_{Y \mid x}^{2} \\
& =E\left(Y^{2} \mid x\right)-[E(Y \mid x)]^{2} \\
& =\sigma_{Y \mid x}^{2}
\end{aligned}
$$

- Example: Continuing the plastic covers...

$\mathrm{y}=$ width	$\mathrm{x}=$ length				
		129	130	131	
	15	0.12	0.42	0.06	0.60
	16	0.08	0.28	0.04	0.40
column totals		0.20	0.70	0.10	1

a) Find the $E(Y \mid X=129)$ and

$$
V(Y \mid X=129)
$$

ANS:
We need the conditional distribution first...

$$
\begin{array}{r|rr}
y & 15 & 16 \\
\hline f_{Y \mid 129}(y) &
\end{array}
$$

Independence

As we saw earlier, sometimes, knowledge of one event does not give us any information on the probability of another event.

Previously, we stated that if A and B were independent, then

$$
P(A \mid B)=P(A)
$$

In the framework of probability distributions, if X and Y are independent random variables, then $f_{Y \mid X}(y)=f_{Y}(y)$.

- Independence

For discrete random variables X and Y, if any of the following properties is true, the others are also true, and X and Y are independent.
(1) $f_{X Y}(x, y)=f_{X}(x) f_{Y}(y) \quad$ for all x and y
(2) $f_{Y \mid X}(y)=f_{Y}(y)$
for all x and y with $f_{X}(x)>0$
(3) $f_{X \mid Y}(x)=f_{X}(x)$
for all x and y with $f_{Y}(y)>0$
(4) $P(X \in A, Y \in B)=P(X \in A) \cdot P(Y \in B)$ for any sets A and B in the range of X and Y .

Notice how (1) leads to (2):

$$
f_{Y \mid X}(y)=\frac{f_{X Y}(x, y)}{f_{X}(x)}=\frac{f_{X}(x) f_{Y}(y)}{f_{X}(x)}=f_{Y}(y)
$$

- Example: Continuing the battery example

Two batteries were chosen without replacement.

Let X denote the number of new batteries chosen.

Let Y denote the number of used batteries chosen.

	$\mathrm{x}=$ number of new chosen			
		0	1	2
$\mathrm{y}=$ number				
of used	0	$10 / 66$	$15 / 66$	$3 / 66$
chosen	1	$20 / 66$	$12 / 66$	
2	$2 / 66$			

a) Without doing any calculations, can you tell whether X and Y are independent?

- Example: Independent random variables

Consider the random variables X and Y, which both can take on values of 0 and 1 .

	X		$\begin{array}{r} \text { row } \\ \text { totals } \end{array}$	
		0	1	
y	0	0.40	0.10	0.50
	1	0.40	0.10	0.50
column totals		0.80	0.20	1

a) Are X and Y independent?

$$
\begin{array}{r|rr}
y & 0 & 1 \\
\hline f_{Y \mid 0}(y) & &
\end{array}
$$

$$
\begin{array}{r|ll}
y & 0 & 1 \\
\hline f_{Y \mid 1}(y) & &
\end{array}
$$

Does $f_{Y \mid X}(y)=f_{Y}(y)$ for all $\mathrm{x} \& \mathrm{y}$?

Does $f_{X Y}(x, y)=f_{X}(x) f_{Y}(y)$ for all $\mathrm{x} \& \mathrm{y}$?

	x		totals	
		0	1	
y	y 0	0.40	0.10	0.50
	1	0.40	0.10	0.50
column totals		0.80	0.20	1

i.e. Does $P(X=x, Y=y)$

$$
=P(X=x) \cdot P(Y=y) ?
$$

