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Arrangements with
Forbidden Positions

Author: John G. Michaels, Department of Mathematics, State University of
New York, College at Brockport.

Prerequisites: The prerequisites for this chapter are basic counting tech-
niques and the inclusion-exclusion principle. See Sections 5.1, 5.3, and 7.5 of
Discrete Mathematics and Its Applications.

Introduction
In this chapter we will discuss the problem of counting arrangements of objects
where there are restrictions in some of the positions in which they can be
placed. For example, we may need to match applicants to jobs, where some of
the applicants cannot hold certain jobs; or we may wish to pair up players to
form two-person teams, but some of the players cannot be paired up with some
of the other players.

Problems such as these, where we want to find the number of arrangements
with “forbidden” positions, have a long history. They can be traced back to the
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early eighteenth century when the French mathematician Pierre de Montmort*
studied the problème des rencontres (the matching problem). In this problem
an urn contains n balls, numbered 1, 2, . . . , n, which are drawn out one at a time.
de Montmort wanted to find the probability that there are no matches in this
process; that is, that ball i is not the ith ball drawn. This problem is really one
of counting derangements — permutations of a set where no element is left in its
own position. (The formula for Dn, the number of derangements of n objects,
can be found in Section 7.6 of Discrete Mathematics and Its Applications.)

Another problem of arrangements, called the problème des ménages (the
problem of the households), asks for the number of ways to arrange n cou-
ples around a table so that the sexes alternate and no husband and wife are
seated together. This problem was solved in 1891 by E. Lucas**. We will solve
problems such as these by defining a polynomial called a rook polynomial and
showing how to use this to count arrangements.

Arrangements with Forbidden Positions
Example 1 Suppose an office manager places an ad for some part-time
help: a keyboard operator (K), a file clerk (F), a stenographer (S), a delivery
person (D), and someone to work in the warehouse (W). Five people answer
the newspaper ad and are interviewed for the jobs. Figure 1 shows which jobs
each of the five applicants (1, 2, 3, 4, and 5) is qualified to handle.

Each square in this figure is either shaded or unshaded. A shaded square
represents a “forbidden position”; that is, the person cannot perform that job.
An unshaded square represents an “allowable position”. For example, Appli-
cant 1 cannot hold the job of stenographer, but can hold any of the other jobs.
In how many ways can the office manager place the five applicants in jobs for
which they are qualified?

* Pierre-Rémond de Montmort (1678–1719) was born into the French nobility,

received his father’s large fortune at age 22, studied philosophy and mathematics

with Father Nicholas de Malebranche, and held the position of canon at Notre-Dame.

He married and began his study of probability, possibly because of his contacts with

the Bernoulli family. In 1708 he published his Essai d’Analyse sur les Jeux de Hasard.

One of the games studied in this work was the matching game treize. The significance

of his contributions in mathematics lies in his use of algebraic methods to study games

of chance.

** Edouard Lucas (1842–1891) was a French number theorist. In 1876 he proved

that the Mersenne number M67 = 267 − 1 was not prime. In that year he also

proved that M127 = 2127 − 1 was prime; for 75 years this was the largest number

proven to be prime. Lucas attached the name “Fibonacci” to the Fibonacci sequence

1, 1, 2, 3, 5, 8, . . . and studied the closely-related Lucas sequence, 1, 3, 4, 7, 11, 18, . . ..



160 Applications of Discrete Mathematics

Figure 1. Job applicants and possible jobs.

Solution: A matching of the applicants with the jobs is called an arrange-
ment with forbidden positions. Two possible job assignments are:

1–keyboard, 2–stenographer, 3–delivery, 4–warehouse, 5–file clerk,
1–warehouse, 2–stenographer, 3–file clerk, 4–delivery, 5–keyboard.

We can think of Figure 1 as a 5× 5 chessboard with nine squares removed.
A rook is a chess piece that moves horizontally or vertically and can take (or
capture) a piece if that piece rests on a square in the same row or column
as the rook (assuming that there are no intervening pieces). For example, a
rook on square (2, F ) can capture an opponent’s piece on any of the squares in
row 2 or column F , but cannot capture a piece on square (1, K). A matching of
applicants to jobs corresponds to a placing of five rooks on the unshaded squares
so that no rook can capture any other rook. These are called “nontaking” rooks.
Thus, the number of acceptable job assignments is equal to the number of ways
of placing five nontaking rooks on this chessboard so that none of the rooks is
in a forbidden position.

The key to determining this number of arrangements is the inclusion-
exclusion principle. To set up the problem so that we can use the inclusion-
exclusion principle, we let

Ai = the set of all arrangements of 5 nontaking rooks
with the rook in row i in a forbidden square,

for i = 1, 2, 3, 4, 5.
If we let U be the set of all possible job assignments, then the solution to

our problem is |U − (A1 ∪A2∪A3 ∪A4 ∪A5)|. Applying the inclusion-exclusion
principle to |A1 ∪ · · · ∪ A5| yields

|A1 ∪ · · · ∪ A5| =
∑

|Ai| −
∑

|Ai ∩ Aj | +
∑

|Ai ∩ Aj ∩ Ak| (1)

−
∑

|Ai ∩ Aj ∩ Ak ∩ Al| + |A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5|,

where we sum over the appropriate sets of subscripts.
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The problem of placing nontaking rooks on allowable squares has now
been reduced to a series of problems of counting the number of ways of placing
nontaking rooks on forbidden squares. We need to determine the size of each
of the 31 sets on the right side of (1). To simplify the solution, we introduce
some notation. Let

ri = the number of ways of placing i nontaking rooks
on forbidden squares of a board.

If we need to emphasize the fact that we are working with a particular board B,
we will write ri(B) instead of ri.

Each of the five expressions on the right side can be written in terms of ri,
for i = 1, 2, 3, 4, 5. The number |Ai| counts the number of ways of placing 5
nontaking rooks, with the rook in row i on a forbidden square. For example,
|A3| = 2 · 4! since there are two ways to place a rook on a forbidden square of
row 3 and 4! ways to place four other nontaking rooks. Therefore

∑ |Ai| = r1·4!.
Similar reasoning applies to

∑ |Ai ∩ Aj | = r2 · 3!,
∑ |Ai ∩ Aj ∩ Ak| = r3 · 2!,∑ |Ai ∩ Aj ∩ Ak ∩ Al| = r4 · 1!, and |A1 ∩ · · · ∩ A5| = r5 · 0!. Making these

substitutions allows us to rewrite (1) as

|A1 ∪ · · · ∪ A5| = r1 · 4! − r2 · 3! + r3 · 2! − r4 · 1! + r5 · 0!.

Hence, the solution to our problem can be written as

5! − (r1 · 4! − r2 · 3! + r3 · 2! − r4 · 1! + r5 · 0!). (2)

It is easy to see that r1 = 9, since there are nine ways to place a rook
on a forbidden square. It is also not difficult to see that r2 = 28 by counting
the 28 ways to place two nontaking rooks on forbidden squares. However the
problems grow increasingly more difficult when we try to find the coefficients
r3, r4, and r5. This leads us to look for techniques to help simplify the counting
process.

Our technique for simplification is one that is often used in problems of
counting — relate the given problem to a series of smaller problems, each of
which is easier to solve. We begin by taking the given chessboard and changing
the order of the rows and the order of the columns to obtain the board B in
Figure 2.

With this rearrangement, the original board B of forbidden squares can
be broken into two disjoint subboards, B1 and B2, shown in Figure 2. (We say
that two boards are disjoint if they have no rows or columns in common.) The
problem of computing the right side of (1) by placing nontaking rooks on forbid-
den squares of B is reduced to two smaller problems: placing nontaking rooks
on the forbidden squares of B1 and placing nontaking rooks on the forbidden
squares of B2.
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Figure 2. Rearrangement of board of Figure 1, and two
disjoint subboards.

For example, to find r1(B) either we place 0 rooks on B1 and 1 on B2, or
else we place 1 rook on B1 and 0 on B2. That is,

r1(B) = r0(B1) · r1(B2) + r1(B1) · r0(B2)
= 1 · 6 + 3 · 1 = 9.

To find r2(B), we observe that placing two nontaking rooks on the forbidden
squares of B gives us three cases to consider: place 0 on B1 and 2 on B2, place 1
on B1 and 1 on B2, or place 2 on B1 and 0 on B2. That is,

r2(B) = r0(B1) · r2(B2) + r1(B1) · r1(B2) + r2(B1) · r0(B2)
= 1 · 9 + 3 · 6 + 1 · 1 = 28.

Similar reasoning can be used to show that:

r3(B) =
3∑

i=0

ri(B1) · r3−i(B2)

= 1 · 2 + 3 · 9 + 1 · 6 + 0 · 1 = 35,

r4(B) =
4∑

i=0

ri(B1) · r4−i(B2)

= 1 · 0 + 3 · 2 + 1 · 9 + 0 · 6 + 0 · 1 = 15,

r5(B) =
5∑

i=0

ri(B1) · r5−i(B2)

= 1 · 0 + 3 · 0 + 1 · 2 + 0 · 9 + 0 · 6 + 0 · 1 = 2.

Substituting the values of ri(B) into (2) yields the solution of the original
problem:
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5! − (r1 · 4! − r2 · 3! + r3 · 2! − r4 · 1! + r5 · 0!)

= 5! − (9 · 4! − 28 · 3! + 35 · 2! − 15 · 1! + 2 · 0!)
= 15.

Hence the original job assignment problem can be done in 15 ways.

Rook Polynomials
The numbers r0(B) = 1, r1(B) = 9, r2(B) = 28, r3(B) = 35, r4(B) = 15, and
r5(B) = 2 in Example 1 can be stored as coefficients of a polynomial:

1 + 9x + 28x2 + 35x3 + 15x4 + 2x5.

More generally, we have the following.

Definition 1 If B is any board, the rook polynomial for B, written R(x, B),
is the polynomial of the form

R(x, B) = r0(B) + r1(B)x + r2(B)x2 + · · · + rn(B)xn

where ri(B) = the number of ways of placing i nontaking rooks on forbidden
squares of the board.

The rook polynomial is not only a convenient bookkeeping device for stor-
ing the coefficients ri(B), but the algebraic properties of polynomials can also
be used to help solve problems of counting arrangements.

In the previous example the coefficients were found by breaking board B
into 2 disjoint subboards B1 and B2. Each of these subboards has its own rook
polynomial:

R(x, B1) = 1 + 3x + x2, R(x, B2) = 1 + 6x + 9x2 + 2x3.

(The reader is asked to verify this in Exercise 1.) If we multiply these polyno-
mials, we obtain

R(x, B1) · R(x, B2) = (1 + 3x + x2)(1 + 6x + 9x2 + 2x3)

= (1 · 1) + (1 · 6 + 3 · 1)x + (1 · 9 + 3 · 6 + 1 · 1)x2

+ (1 · 2 + 3 · 9 + 1 · 6)x3 + (3 · 2 + 1 · 9)x4 + (1 · 2)x5

= 1 + 9x + 28x2 + 35x3 + 15x4 + 2x5

= R(x, B).
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Thus, the rook polynomial for B is the product of the rook polynomials for the
subboards B1 and B2. The fact that a similar result is always true is stated in
Theorem 1.

Theorem 1 If a board B is broken into 2 disjoint subboards B1 and B2,
then R(x, B) = R(x, B1) · R(x, B2).

Proof: We will prove that the 2 polynomials, R(x, B) and R(x, B1) ·R(x, B2),
are equal. To do this, we will show that, for each i, the xi term of R(x, B)
is equal to the xi term of the product R(x, B1) · R(x, B2). To see that this is
always true, consider the product of the two rook polynomials

R(x, B1) · R(x, B2) = (r0(B1) + r1(B1)x + · · · + rm(B1)xm)
· (r0(B2) + r1(B2)x + · · · + rn(B2)xn).

Multiplying these two polynomials and combining like terms yields the xi term

(r0(B1) · ri(B2) + r1(B1) · ri−1(B2) + · · · + ri(B1) · r0(B2))xi.

This sum gives the number of ways of placing i nontaking rooks on B, broken
down into i + 1 cases according to the number of rooks on B1 and the number
of rooks on B2. Therefore this coefficient is equal to ri(B), which yields the
term ri(B)xi of R(x, B). Since the corresponding terms of R(x, B1) · R(x, B2)
and R(x, B) are equal, we have R(x, B) = R(x, B1) · R(x, B2).

The following example illustrates the technique of this theorem.

Example 2 A woman on a sales trip brought four skirts (blue, brown, gray
plaid, green stripe) and five blouses (yellow, pink, white, tan, and blue). Some
of the skirts cannot be worn with some of the blouses, as shown by the shaded
squares in Figure 3. In how many ways can she make four outfits by pairing
the four skirts with four of the five blouses?

Figure 3. Possible skirt and blouse outfits.
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Solution: (Note that in this example we are matching a set of four objects
into a set of five objects. We will find the rook polynomial for the board B and
then use the inclusion-exclusion principle to finish the counting process. Since
the board is not square, we will need to suitably adjust our counting when we
use the inclusion-exclusion principle.)

We observe that this board B of forbidden positions can be broken into
two disjoint subboards B1 and B2, as in Figure 4.

Figure 4. Disjoint subboards for the board of Figure 3.

It is not difficult to compute the rook polynomials for each of these boards:

R(x, B1) = 1 + x

R(x, B2) = 1 + 4x + 4x2 + x3.

(This is left as Exercise 2.) By Theorem 1,

R(x, B) = R(x, B1) · R(x, B2)

= (1 + x)(1 + 4x + 4x2 + x3)

= 1 + 5x + 8x2 + 5x3 + x4.

Therefore r0 = 1, r1 = 5, r2 = 8, r3 = 5, r4 = 1. Now that we know the
number of ways to place nontaking rooks on forbidden squares, we use the
inclusion-exclusion principle to obtain the final answer:

|U − (A1 ∪ · · · ∪ A4)| = |U | − |A1 ∪ · · · ∪ A4|
= |U | −

(∑
|Ai| −

∑
|Ai ∩ Aj |

+
∑

|Ai ∩ Aj ∩ Ak| − |A1 ∩ A2 ∩ A3 ∩ A4|
)

= 5 · 4 · 3 · 2 − (
5(4 · 3 · 2) − 8(3 · 2) + 5(2) − 1(1)

)
= 39.

(Note that |U | = 5 · 4 · 3 · 2 since |U | is equal to the number of ways to place
four nontaking rooks on the 4× 5 board. Also,

∑ |Ai| = 5(4 · 3 · 2) since r1 = 5
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and there are 4 · 3 · 2 ways to place the three other nontaking rooks in three of
the other four columns.)

The following theorem summarizes the technique of using a rook polyno-
mial together with the inclusion-exclusion principle to count arrangements with
forbidden positions.

Theorem 2 The number of ways to arrange n objects among m positions
(where m ≥ n) is equal to

P (m, n) − [
r1(B) · P (m − 1, n − 1) − r2(B) · P (m − 2, n − 2) + · · ·

+(−1)n+1rn(B) · P (m − n, 0)
]

where the numbers ri(B) are the coefficients of the rook polynomial for the
board of forbidden positions.

In particular, if m = n, the number of arrangements is

n! − [
r1(B) · (n − 1)! − r2(B) · (n − 2)! + · · · + (−1)n+1rn(B) · 0!

]
.

Example 3 Problème des rencontres An urn contains n balls, num-
bered 1, 2, . . . , n. The balls are drawn out one at a time and placed in a tray
that has positions marked 1, 2, . . . , n, with the ball drawn first placed in posi-
tion 1, the ball drawn second placed in position 2, etc. A rencontre, or match,
occurs when ball i happens to be placed in position i. In how many ways can
the balls be drawn from the urn so that there are no matches?

Solution: We need to find Dn = the number of derangements of 1, 2, . . . , n.
We will do this by using rook polynomials. Since a match occurs when ball i
is in position i, we shade the square (i, i), for i = 1, 2, . . . , n, of board B, as in
Figure 5.

Figure 5. An n × n board.

Board B can be broken into n disjoint subboards B1, B2, . . . , Bn, each
consisting of the single square (i, i).
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Each subboard has the rook polynomial R(x, Bi) = 1 + x. Theorem 1
applies here (using n instead of 2), and we have

R(x, B) = R(x, B1) · R(x, B2) . . . R(x, Bn)
= (1 + x)(1 + x) . . . (1 + x)
= (1 + x)n

= C(n, 0) + C(n, 1)x + C(n, 2)x2 + · · · + C(n, n)xn

using the Binomial Theorem at the last step to expand (1 + x)n. Therefore, by
Theorem 2, the number of arrangements with no matches is equal to

n! − [
C(n, 1)(n − 1)! − C(n, 2)(n − 2)! + · · · + (−1)n+1C(n, n)0!

]

= n! − n! +
n!
2!

− n!
3!

+ · · · + (−1)n n!
n!

= n!(
1
2!

− 1
3!

+ · · · + (−1)n 1
n!

).

The method of simplifying the counting process by breaking a chessboard
into two or more disjoint subboards works well when it can be done, as in
Examples 2 and 3. But suppose it is impossible to break up a given board?
The following example illustrates how to handle such a problem.

Example 4 Suppose a person has four gifts (1, 2, 3, 4) to give to four
people — Kathy (K), Fred (F), Dave (D), and Wendy (W). The shaded squares
in Figure 6 show which gifts cannot be given to the various people. Assuming
that each person is to receive a gift, find the number of ways the four gifts can
be given to the four people.

Figure 6. Possible distributions of gifts.

Solution: In this case it is not possible to break the board into two distinct
subboards. (To see why, consider row 1. If square (1, K) is in a subboard B1,
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this would force the forbidden square (3, K) to also be in board B1. This forces
the forbidden square (3, D) to be in B1. This forces the forbidden squares in
row 2 to be in B1, which in turn forces square (4, W ) to be in B1. Therefore B1

is the entire board B and we have not simplified the problem.)
To solve a problem involving such a board, we simplify the problem by

examining cases. We want to find the rook polynomial R(x, B). To find ri(B)
we begin by choosing a forbidden square, such as (3, K). Either we place a rook
on this square (and hence no other rook in row 3 or column K) or else we do
not place a rook on this square. In either case we are left with smaller boards
to consider.

If we place a rook on square (3, K), then the remaining i − 1 rooks must
be placed on forbidden squares of the board B′ in Figure 7. This can be done
in ri−1(B′) ways. If we do not place a rook on square (3, K), then the i rooks
must all be placed on forbidden squares of the board B′′ in Figure 7. This can
be done in ri(B′′) ways.

Figure 7. Subboards of the board of Figure 6.

Since these two cases exhaust all possibilities, we have

ri(B) = ri−1(B′) + ri(B′′). (3)

This recurrence relation can be used to build the rook polynomial for B. Since
ri(B) is to be the coefficient of xi in the rook polynomial for B, multiply
equation (3) by xi to obtain

ri(B)xi = ri−1(B′)xi + ri(B′′)xi. (4)

Summing equations (4) with i = 1, 2, 3, 4 gives

4∑
i=1

ri(B)xi =
4∑

i=1

ri−1(B′)xi +
4∑

i=1

ri(B′′)xi

= x
4∑

i=1

ri−1(B′)xi−1 +
4∑

i=1

ri(B′′)xi

= x
3∑

i=0

ri(B′)xi +
4∑

i=1

ri(B′′)xi.
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Using the fact that r0(B)x0 = 1 for any board B, we add r0(B)x0 to the left
side and r0(B′′)x0 to the second sum on the right side, obtaining

4∑
i=0

ri(B)xi = x
3∑

i=0

ri(B′)xi +
4∑

i=0

ri(B′′)xi,

or
R(x, B) = xR(x, B′) + R(x, B′′). (5)

It is easy to see that
R(x, B′) = 1 + 3x + x2.

It is also not difficult to find the rook polynomial for B′′, since its board already
appears as disjoint subboards:

R(x, B′′) = (1 + x)(1 + 4x + 3x2)

= 1 + 5x + 7x2 + 3x3.

Substituting these in equation (5) gives

R(x, B) = xR(x, B′) + R(x, B′′)

= x(1 + 3x + x2) + (1 + 5x + 7x2 + 3x3)

= 1 + 6x + 10x2 + 4x3.

By Theorem 2, the number of ways to distribute the four gifts is

4! − (6 · 3! − 10 · 2! + 4 · 1!) = 4.

The analog of equation (5) holds for all boards, which gives the following
theorem.

Theorem 3 If (a, b) is a square on board B, if board B′ is obtained from
B by removing all squares in row a and column b, and if board B′′ is obtained
from B by removing the one square (a, b), then

R(x, B) = xR(x, B′) + R(x, B′′).

Example 5 A tennis coach wants to pair five men (1, 2, 3, 4, 5) and five
women (6, 7, 8, 9, 10) for some practice sessions in preparation for a mixed
doubles tournament. Based on the players’ schedules and levels of ability, the
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Figure 8. Possible pairings of tennis players.

coach knows that certain pairs cannot be formed, as shown by the shaded
squares in Figure 8. In how many ways can the five men and the five women
be paired?

Solution: Since it is not possible to break board B into disjoint subboards
(the reader should check this), we use Theorem 3 to find R(x, B).

If we begin with square (3, 8) in Theorem 3, we obtain the boards B′

and B′′ of Figure 9.

Figure 9. Subboards of board of Figure 8.

Board B′ can be broken into two disjoint subboards (using squares (5, 6)
and (5, 9) as one board), and its rook polynomial is

R(x, B′) = (1 + 2x)(1 + 3x + x2)

= 1 + 5x + 7x2 + 2x3.

However, it is not possible to break board B′′ into disjoint subboards.
To find the rook polynomial for board B′′, we need to use Theorem 3 again.

Using square (5, 9) in the theorem, we obtain

R(x, B′′) = x(1 + 4x + 3x2) + (1 + 2x)(1 + 5x + 6x2 + x3)

= 1 + 8x + 20x2 + 16x3 + 2x4.
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(The details are left as Exercise 8.) Therefore,

R(x, B) = xR(x, B′) + R(x, B′′)

= x(1 + 5x + 7x2 + 2x3) + (1 + 8x + 20x2 + 16x3 + 2x4)

= 1 + 9x + 25x2 + 23x3 + 4x4.

From Theorem 3, it follows that the tennis coach can pair the five men and five
women in 12 ways.
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Exercises

1. Verify that R(x, B1) = 1 + 3x + x2 and R(x, B2) = 1 + 6x + 9x2 + 2x3 for
the boards of Figure 2.

2. Verify that R(x, B1) = 1 + x and R(x, B2) = 1 + 4x + 4x2 + x3 for the
boards of Figure 4.

3. Prove that it is impossible to break the board B of Figure 8 into disjoint
subboards.

In Exercises 4–7 find the rook polynomial and the number of arrangements
with no object in a forbidden position for the given board.
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4.

5.

6.

7.

8. Carry out the details to find R(x, B′′) in Example 5.

9. Find the number of permutations of 1, 2, 3, 4 where 1 is not in position 3, 2
is not in positions 3 or 4, and 4 is not in position 1.

10. A professor has divided a discrete mathematics class into four groups. Each
of the groups is to write a biography on one of the following mathematicians:
Boole, DeMorgan, Euclid, Euler, Hamilton, and Pascal. Group 1 does
not want to write on Euler or Pascal, Group 2 does not want to write
on DeMorgan or Hamilton, Group 3 does not want to write on Boole,
DeMorgan, or Pascal, and Group 4 does not want to write on Boole or Euler.
If the professor wants each group to write on a different mathematician, in
how many ways can the professor assign a different mathematician to each
group?
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11. Suppose B is a 4 × 4 board with four forbidden positions, all in the last
column. Use the method of rook polynomials to prove that there are no
possible arrangements.

12. Suppose B is a 4×4 board with no forbidden positions. Use the method of
rook polynomials to find the number of arrangements of the four objects.

13. Let A = {1, 2, 3, 4}. Find the number of 1-1 functions f : A → A such that
f(1) �= 3, f(2) < 3, and f(4) > 1.

14. The head of a mathematics department needs to make summer teaching
assignments for five courses: numerical analysis, mathematical modeling,
discrete mathematics, precalculus, and applied statistics. Professor Bloch
does not want to be assigned to either mathematical modeling or precalcu-
lus, Professor Mahoney will not teach applied statistics, Professor Nakano
does not want to teach numerical analysis or discrete mathematics, Profes-
sor Rockhill will teach any course except applied statistics, and Professor
Sommer is willing to teach anything except numerical analysis. In how
many ways can the department head match the five faculty to the five
courses so that the wishes of the faculty are followed?

�15. (A problème des ménages) Four married couples are to be seated around
a circular table so that no two men or two women are seated next to each
other and no husband is to sit next to his wife. Assuming that arrangements
such as 123 · · ·78 and 234 · · ·81 are different, how many arrangements are
possible? (Hint: First determine the number of ways in which the four
women can be seated. Then set up a board to determine the forbidden
positions for the four men.)

Computer Projects

1. Write a computer program that takes a board of forbidden positions as
input and determines whether the board can be written as two disjoint
subboards.

2. Write a computer program that uses Theorem 3 to find the rook polynomial
for a board of forbidden positions.

3. Write a computer program that takes a board of forbidden positions as
input and gives as output the number of arrangements such that no object
is in a forbidden position.


