Principal Component Analysis


[image: image1.jpg]oS —




IN THE NAME OF ALLAH WHO IS MOST BENEFIENT AND MERCEFULL.

	
[image: image2]
On
PCA

Submitted to:





Dr. Maruf Pasha

Submitted By:

Wasif Laeeq [07-01]

Ahmad Mushtaq [07-45]

Shahrukh Adeel [07-22]

Atif Aneeq [07-15]

Mudassir Abbas [07-34]

[image: image3.png]i(%‘)

g




Bahauddin Zakariya 

University

MULTAN

	DEDICATED

To

[image: image4]

[image: image5]

	
[image: image6]

Beginning with the name of Allah and with the blessings of his most respected and beloved Holly Prophet (PBUH), I am able to complete our report on PCA.


We would like to thank our teacher, Dr. Maruf Pasha who gave us an opportunity to present on such an interesting topic.


Along this I am also thankful to our parents who are most honorable and respected personalities for us in this world. We would also like to mention about my teachers and friends because without their help, support, sincerity, and loyalty, we could not able to get my report complete successfully.

God bless all of them.

Team

	This page is intentionally left blank.... ;)


Principal Components Analysis

Contents at a glance

· Introduction ......................................................................................................7

· What is Principal Components Analysis?........................................................7

· When to use Principal Components Analysis? ................................................8

· How to use the PCA tool? ...............................................................................9

· Excell functions used…………............................................................................11

I. Introduction

When measuring only two variables, such as height and weight in a dozen patients, it

is easy to plot this data and to visually assess the correlation between these two

factors. But for example, in a typical micro array experiment, the expression of thousands of genes is measured across many conditions such as treatments or time points.

Therefore, it becomes impossible to make a visual inspection of the relationship

between genes or conditions in such a multi-dimensional matrix. One way to make

sense of this data is to reduce its dimensionality. Several data decomposition

techniques are available for this purpose: Principal Components Analysis (PCA) is

among these techniques that reduces the data into two dimensions.

II.  What is Principal Components Analysis?

Principal Components Analysis is a method that reduces data dimensionality by

performing a covariance analysis between factors. As such, it is suitable for data sets

in multiple dimensions, such as a large experiment in gene expression. Let’s take an

example that illustrates how PCA works with a microarray experiment:

Say that you measure 10,000 genes in 8 different patients. These values could form

a matrix of 8 x 10,000 measurements. Now imagine that each of these 10,000 genes

is plotted in a multi-dimensional on a scatter plot consisting of 8 axes, 1 for each

patient. The result is a cloud of values in multi-dimensional space.

To characterize the trends exhibited by this data, PCA extracts directions where the

cloud is more extended. For instance, if the cloud is shaped like a football, the main

direction of the data would be a mid line or axis along the length of the football. This

is called the first component, or the principal component. PCA will then look for the

next direction, orthogonal to the first one, reducing the multidimensional cloud into a

two-dimensional space. The second component would be the axis along the football

width.

For the sake of simplicity, we will perform PCA on a two dimensional data set using Excell Workbook. We will perform various functions of statistics such as MEAN, VARIANCE, and COVARIANCE as well Matrix Functions with the help of Microsoft Excell.
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Fig 1: An example of two dimensional dataset in Microsoft Excell

In this particular example, we have two dimensional datasets.

In a more complex data set, more components might add information about

Interesting trends in the data.

Note: Microsoft Excel has is not able to automatically perform PCA on any given dataset. But it helps in the statistical functions which will are essential for performing PCA.

III. When to use Principal Components Analysis?

PCA is recommended as an exploratory tool to uncover unknown trends in the data.

For example, PCA on genes provide a way to identify predominant gene expression patterns.

When applied on conditions, PCA will explore correlations between samples or

conditions. Note that because the goal of PCA is to ‘summarize’ the data, it is not

considered a clustering tool. PCA does not attempt to group genes by user-specified

criteria as does the clustering methods.

IV. How to use the PCA tool?

Step 1:  Get some data

In my simple example, I am going to use my own made-up data set. It's only got 2 dimensions, and the reason why I have chosen this is so that I can provide plots of the data to show what the PCA analysis is doing at each step.

Step 2:  Subtract the mean

For PCA to work properly, you have to subtract the mean from each of the data dimensions. The mean subtracted is the average across each dimension. So, all the values have (the mean of the values of all the data points) subtracted, and all the values have subtracted from them. This produces a data set whose mean is zero.

Step 3:  Calculate the covariance matrix

This is done in exactly the same way as was discussed in section 2.1.4. Since the data is 2 dimensional, the covariance matrix will be . There are no surprises here, so I will just give you the result:

Step 4: Calculate the eigenvectors and eigenvalues of the covariance matrix

Since the covariance matrix is square, we can calculate the eigenvectors and eigen values for this matrix. These are rather important, as they tell us useful information about our data. We will show you in the presentation soon. 

It is important to notice that both eigenvectors should be unit eigenvectors ie. their

Lengths are both 1. This is very important for PCA, but luckily, most math packages, when asked for eigenvectors, will give you unit eigenvectors.

So what do they mean?  Eigen vectors are always perpendicular to each other. But, more importantly, they provide us with information about the patterns in the data. That eigenvector is shows us that how  two data sets are related along that line. The second eigenvector gives us the other, less important, pattern in the data, that all the points follow the main line, but are off to the side of the main line by some amount.

So, by this process of taking the eigenvectors of the covariance matrix, we have been able to extract lines that characterize the data. The rest of the steps involve trans-forming the data so that it is expressed in terms of them lines.

Step 5:  Choosing components and forming a feature vector

Here is where the notion of data compression and reduced dimensionality comes into it. If you look at the eigenvectors and eigen values, you will notice that the eigen values are quite different values. In fact, it turns out that the eigenvector with the highest eigen value is the principle component of the data set. In our example, the eigenvector with the larges eigen value was the one that pointed down the middle of the data. It is the most significant relationship between the data dimensions.

In general, once eigenvectors are found from the covariance matrix, the next step is to order them by eigen value, highest to lowest. This gives you the components in order of significance. Now, if you like, you can decide to ignore the components of lesser significance. You do lose some information, but if the eigen values are small, you don't lose much. If you leave out some components, the final data set will have less dimensions than the original. To be precise, if you originally have dimensions in your data, and so you calculate eigenvectors and eigen values, and then you choose only the first eigenvectors, then the final data set has only dimensions.

What needs to be done now is you need to form a feature vector, which is just a fancy name for a matrix of vectors. This is constructed by taking the eigenvectors that you want to keep from the list of eigenvectors, and forming a matrix with these eigenvectors in the columns.

Step 6:  Deriving the new data set

This the final step in PCA, and is also the easiest. Once we have chosen the components (eigenvectors) that we wish to keep in our data and formed a feature vector, we simply take the transpose of the vector and multiply it on the left of the original data set, transposed.

What will this give us? It will give us the original data solely in terms of the vectors we chose. Our original data set had two axes, and , so our data was in terms of them. It is possible to express data in terms of any two axes that you like. If these axes are perpendicular, then the expression is the most efficient. This was why it was important that eigenvectors are always perpendicular to each other. We have changed our data from being in terms of the axes and , and now they are in terms of our 2 eigenvectors. In the case of when the new data set has reduced dimensionality, ie. we have left some of the eigenvectors out, the new data is only in terms of the vectors that we decided to keep.

So what have we done here? Basically we have transformed our data so that is expressed in terms of the patterns between them, where the patterns are the lines that most closely describe the relationships between the data. This is helpful because we have now classified our data point as a combination of the contributions from each of those lines. Initially we had the simple and axes. This is fine, but the and values of each data point don't really tell us exactly how that point relates to the rest of the data. Now, the values of the data points tell us exactly where (ie. above/below) the trend lines the data point sits. In the case of the transformation using both eigenvectors, we have simply altered the data so that it is in terms of those eigenvectors instead of the usual axes. But the single-eigenvector decomposition has removed the contribution due to the smaller eigenvector and left us with data that is only in terms of the other.

V. Functions of Excell used:

=AVERAGE(number1, [number2],...)
Show All Hide All This article describes the formula syntax and usage of the AVERAGE function (function: A prewritten formula that takes a value or values and gives the output automatically)

COVAR function
Show All Hide All Returns covariance, the average of the products of deviations for each data point pair. Use covariance to determine the relationship between two data sets.

Var function

The VAR function returns the sample variance for a sample whose values are contained in an Excel worksheet and whose values are specified by the arguments to VAR.

Mmult( array1, array2 )

array1is an array of numbers. array1 must have the same number of columns as the number of rows in array2.

array2is an array of numbers. array1 must have the same number of columns as the number of rows in array2.

Minverse( array )

array is an array of numbers. The array must have the same number of rows as the number of columns.
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