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Data Warehousing & 
Data Mining

• Clustering – I

Lecture 11  Dated 20/12/2010
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In this lecture

• The Problem of Clustering

• Types of Clustering

• Similarity and Dissimilarity

• Distance Measures

• Scales of Measurement

• Various Distance Functions

• The lecture is based (and adapted) from  
– “CS345 --- Lecture Notes”, by Jeff D Ullman at Stanford. http://www-
db.stanford.edu/~ullman/cs345-notes.html

– Vipin Kumar’s course in data mining offered at University of Minnesota

– official text book slides of Jiawei Han and Micheline Kamber, “Data Mining: 
Concepts and Techniques”, Morgan Kaufmann Publishers, August 2000
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The Problem of Clustering

• Given a set of points, with a notion of distance 
between points, group the points into some 
number of clusters, so that members of a cluster 
are in some sense as nearby as possible.

• Clustering is unsupervised classification: no 
predefined classes.

• Formally, Clustering is the process of grouping data 
points such as intra-cluster distance is minimized 
and inter-cluster distance is maximized. 
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Example Applications
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• Marketing: Help marketers 

discover distinct groups in their 

customer bases

• Land use: Identification of areas 

of similar land use in an earth 

observation database

• Insurance: Identifying groups of 

motor insurance policy holders 

with a high average claim cost

• City-planning: Identifying groups 

of houses according to their 

house type, value, and 

geographical location
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What is not Cluster Analysis?

• Supervised classification
– Have class label information

• Simple segmentation
– Dividing students into different registration groups 
alphabetically, by last name

• Results of a query
– Groupings are a result of an external specification

• Graph partitioning
– Some mutual relevance and synergy, but areas are not identical
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Types of Clustering

• A clustering is a set of clusters

• Important distinction between hierarchical 
and partitional sets of clusters 

– Partitional Clustering
• A division data objects into non-overlapping subsets (clusters) 
such that each data object is in exactly one subset

– Hierarchical clustering
• A set of nested clusters organized as a hierarchical tree 

• Other distinctions – coming slides
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Partitional Clustering

Original Points A Partitional  Clustering
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Hierarchical Clustering
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Other Distinctions Between Sets of 
Clusters

• Exclusive versus non-exclusive
– In non-exclusive clusterings, points may belong to multiple 
clusters.

– Can represent multiple classes or ‘border’ points

• Fuzzy versus non-fuzzy
– In fuzzy clustering, a point belongs to every cluster with some 
weight between 0 and 1

– Weights must sum to 1
– Probabilistic clustering has similar characteristics

• Partial versus complete
– In some cases, we only want to cluster some of the data

• Heterogeneous versus homogeneous
– Cluster of widely different sizes, shapes, and densities
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Types of Clusters

• Well-separated clusters

• Center-based clusters

• Contiguous clusters

• Density-based clusters

• Property or Conceptual

• Described by an Objective Function



12/27/2010

6

11

Types of Clusters: Well-Separated

• Well-Separated Clusters: 
– A cluster is a set of points such that any point in a cluster is 
closer (or more similar) to every other point in the cluster than to 
any point not in the cluster. 

3 well-separated clusters
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Types of Clusters: Center-Based

• Center-based
– A cluster is a set of objects such that an object in a cluster is 
closer (more similar) to the “center” of a cluster, than to the 
center of any other cluster  

– The center of a cluster is often a centroid, the average of all the 
points in the cluster, or a medoid, the most “representative” point 
of a cluster 

4 center-based clusters
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Types of Clusters: Density-Based

• Density-based
– A cluster is a dense region of points, which is separated by low-
density regions, from other regions of high density. 

– Used when the clusters are irregular or intertwined, and when 
noise and outliers are present. 

6 density-based clusters
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Types of Clusters: Objective Function …

• Map the clustering problem to a different domain 
and solve a related problem in that domain

– Proximity matrix defines a weighted graph, where the 
nodes are the points being clustered, and the weighted 
edges represent the proximities between points

– Clustering is equivalent to breaking the graph into 
connected components, one for each cluster. 

– Want to minimize the edge weight between clusters and 
maximize the edge weight within clusters 
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Characteristics of the Input Data Are Important

• Type of proximity or density measure
– This is a derived measure, but central to clustering  

• Sparseness
– Dictates type of similarity

– Adds to efficiency

• Type of Data
– Dictates type of similarity

– Other characteristics, e.g., autocorrelation

• Dimensionality

• Noise and Outliers

• Type of Distribution
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Similarity and Dissimilarity

• Similarity

– Numerical measure of how alike two data objects are.

– Is higher when objects are more alike.

– Often falls in the range [0,1]

• Dissimilarity

– Numerical measure of how different are two data objects

– Lower when objects are more alike

– Minimum dissimilarity is often 0

– Upper limit varies

• Proximity refers to a similarity or dissimilarity
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Distance Measures

• Each clustering problem is based on some kind of 
“distance” between points.

– Distance between documents

– Distance between demographic details of two 
customers

– Distance between transactions 

– Distance between strings (proteins, addresses etc.)  

• Two major classes of distance measure:

1. Euclidean : based on position of points in some k -
dimensional space.

2. Noneuclidean : not related to position or space. 
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Scales of Measurement

• Applying a distance measure largely depends on the type 

of input data

• Major scales of measurement:

1. Nominal Data (aka Nominal Scale Variables) 

• Typically classification data, e.g. m/f 

• no ordering, e.g. it makes no sense to state that M > F 

• Binary variables are a special case of Nominal scale variables. 

2. Ordinal Data (aka Ordinal Scale)

• ordered but differences between values are not important 

• e.g., political parties on left to right spectrum given labels 0, 1, 2 

• e.g., Likert scales, rank on a scale of 1..5 your degree of satisfaction 

• e.g., restaurant ratings 
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Scales of Measurement

• Applying a distance function largely depends on the type 

of input data

• Major scales of measurement:

3. Interval Data (aka interval scaled)

• Ordered and equal intervals. Measured on a linear scale. 

• Differences make sense

• e.g., temperature (C,F), dates

4. Ratio Data (aka ratio scaled)

• Continuous positive measurements on a nonlinear scale 

• Ordered

• e.g., height, weight, age, length 
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Scales of Measurement

• Only certain operations can be performed on 
certain scales of measurement. 

Nominal Scale

Ordinal Scale

Interval Scale

Ratio Scale

1. Equality

2. Count

3. Rank
(Cannot quantify difference)

4. Quantify the difference

5. Can take ratios
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Axioms of a Distance Measure

• d is a distance measure if it is a function 
from pairs of points to reals such that:

1. d(x,x) = 0.

2. d(x,y) = d(y,x).

3. d(x,y) > 0.

4. d(x,y) < d(x,z) + d(z,y) (triangle inequality).
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Some Euclidean Distances

• L2 norm (also common or Euclidean distance):

– The most common notion of “distance.”

• L1 norm (also Manhattan distance)
– distance if you had to travel along coordinates only.

• Both norms are special forms of Minwoski norm
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Examples L1 and L2 norms

x = (5,5)

y = (9,8)
L2-norm:

dist(x,y) = √(42+32) = 5

L1-norm:

dist(x,y) = 4+3 = 7

4
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5
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Another Euclidean Distance

• L∞ norm : d(x,y) = the maximum of the 
differences between x and y in any 
dimension.

• Note: the maximum is the limit as n goes to 
∞ of what you get by taking the n th power of the 

differences, summing and taking the n th root.
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Non-Euclidean Distances

• Jaccard measure for binary vectors 

• Cosine measure = angle between vectors from 
the origin to the points in question.

• Edit distance = number of inserts and deletes 
to change one string into another.
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Jaccard Measure

• A note about Binary variables first 

– Symmetric binary variable

• If both states are equally valuable and carry the same weight, 
that is, there is no preference on which outcome should be 
coded as 0 or 1.

• Like “gender” having the states male and female

– Asymmetric binary variable:

• If the outcomes of the states are not equally important, such as 
the positive and negative outcomes of a disease test.

• We should code the rarest one by 1 (e.g., HIV positive), and the 
other by 0 (HIV negative).

– Given two asymmetric binary variables, the agreement 
of two 1s (a positive match) is then considered more 
important than that of two 0s (a negative match).
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Edit Distance

• The edit distance of two strings is the number 
of inserts and deletes of characters needed to 
turn one into the other.

• Equivalently, d(x,y) =  |x| + |y| -2|LCS(x,y)|.

– LCS = longest common subsequence = longest 
string obtained both by deleting from x and 
deleting from y.
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The Curse of Dimensionality

• While clustering looks intuitive in 2 dimensions, 
many applications involve 10 or 10,000 dimensions.

• High-dimensional spaces look different: the 
probability of random points being close drops 
quickly as the dimensionality grows.

• In a high dimension space, almost all pairs of 
points are about as far away as average.


