

Entity Relationship (ER) Modelling (Review)

- first proposed by Peter Chen in 1976
- entity relationship (ER) models represent the major data classes and the business relationships between them
- ER modelling is the standard data modelling technique used in practice
- many CASE tools support ER modelling

Entities

- an entity is a person, place, object, event, or concept in the user environment about which the organisation wishes to maintain data
- each entity type is represented on the ER model by a named rectangle - by convention the name is a singular noun

- Choose a key that is stable and will not change its value over the life of each instance of the entity
- choose a key that has valid values and will not be null
- avoid keys with embedded structure
- consider substituting surrogate keys for large composite keys

		Relati	on	
 a two c corresp 	dimens bondin	ion or "flat g to an ent	" file of d ity	ata (loosely)
Em	ployee			
	Emp#	Name	Salary	Dept
	1247	Adams	24000	Finance
	1982	Smith	27000	MIS
	9314	Jones	33000	Finance
	Emplo	yee (Emp#, Na	ame, Salary,	Dept)

- normalisation is a process for converting complex data structures into simple, stable data structures
- normalised data models are:
 - robust and stable
 - minimally redundant
 - flexible

- insertion
- deletion
- modification

Partial Dependency Anomalies

Order-Item

Order#	Item#	Desc	Qty
27	873	nut	2
28	402	bolt	1
28	873	nut	10
30	495	washer	50

- UPDATE change item desc in many places
- *DELETE* data for last item lost when last order for that item is deleted
- CREATE cannot add new item until it is ordered

- mainly used for database design in transaction processing, operational systems
- used for detailed enterprise data warehouse design
- design is robust, flexible and support data integrity

- popularised by Ralph Kimball in the 1990s
- based on the multi-dimensional model of data and designed for retrieval-only databases
- very simple, intuitive, and easily-understood structure
- also known as star schema design

Dimensional Modelling

- A dimensional model consists of
 - a fact table
 - several dimensional tables
 - hierarchies in the dimensions
 - aggregate tables
- Essentially a "de-normalised" data model

- Actual data might look like this
- Granularity, or level of detail, is a key issue

Time-id	Store-id	Cust-id	Prod-id	Dollar sales	Unit Sales
T100	S303	C101	P98	\$120,000	5,000
T101	S303	C256	P98	\$240000	10,000
T102	S387	C101	P10	\$456,000	27,899
T100	S234	C400	P56	\$100,200	5,600

Data Modelling in Data Warehouse Design

- entity relationship modelling and subject areas
 - data warehouse architecture
- relational modelling
 - data warehouse detailed design
- dimensional modelling
 - data mart design / data warehouse design