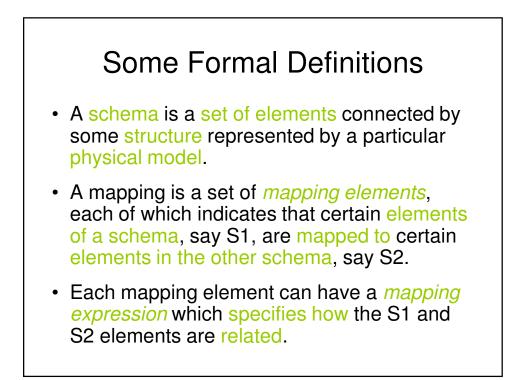
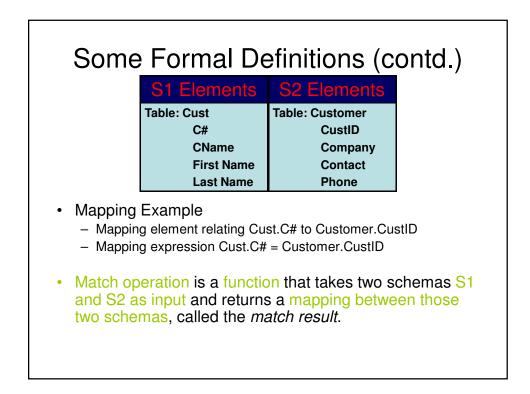


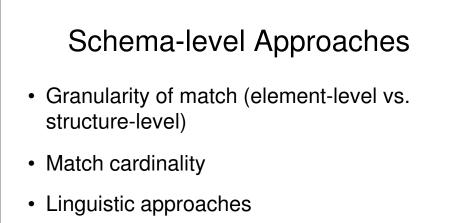
Part 1
 The process of ETL Data Transformation Schema Matching and Integration Some Formal Definitions Schema Matching Approaches Schema-Level Approaches Granularity of match (element-level vs. structure-level) Match cardinality Linguistic approaches Constraint-based approaches
 Combing Matchers Part [1] Based on Rahm, E., and P. A. Bernstein, "A Survey of Approaches to Automatic Schema Matching," VLDB Journal 10, 4 (Dec. 2001), pp. 334-350 Erhard Rahm and Hong Hai Do, "Data Cleaning: Problems and Current Approaches"




The Process of Extract – Transform – Load

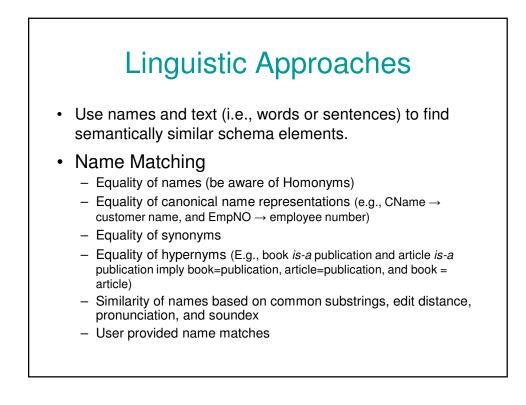
- Solutions in ETL
 - Schema Integration and Matching
 - Data Cleansing
 - Data Loading
- A number of strategies for each of these solution.
- · Let's start with Schema Integration & Matching

Schema Integration & Matching


- Fundamental Schema Matching Operator -Match
 - Input: Multiple, Heterogeneous Schemas
 - Output: Mappings
- Application domain
 - Schema Integration: Structures and Terminological relationships
 - Data warehouses: Source-to-warehouse Transformation
 - E-commerce: Message Translation
 - Semantic query processing: A Run-time Scenario

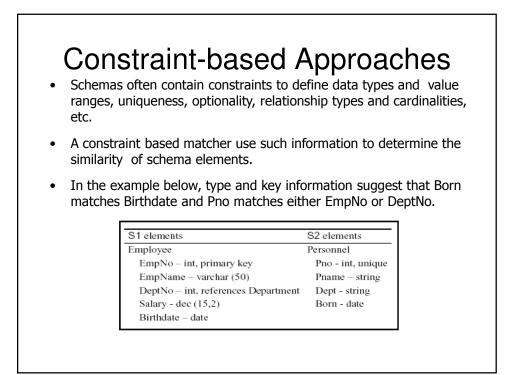
Schema Matching Approaches

- Schema Level Approaches
 - Consider schema-level information only.
 - Information includes the usual properties of schema elements, such as name, description, data type, relationship types (part-of, is-a, etc.), constraints, and schema structure
 - Heavy Metadata usage
- Instance Level Approaches
 - Matching approaches that consider instance data (i.e., data contents).
 - Especially useful when schema information is limited, as is often the case for semi structured data.


· Constraint-based approaches

Granularity of Match

- · Element-level matching
 - Determines the matching elements in the second input schema.
 - In the simplest case, only elements at the finest level of granularity are considered, such as attributes in an XML schema or columns in a relational schema.
 - e.g. Address.ZIP = CustomerAddress.PostalCode
- Structure-level Matching
 - Matching combinations of elements that appear together in a structure.
 - In the ideal case, all components of the structures in the two schemas fully match.
 - Alternatively, only some of the components may be required to match (i.e., a partial structural match).


Gr	anularity	of Match
S1 elements		
Address Street City State Zip	CustomerAddr ess Street City USState PostalCode	Full structure match of Address and CustomerAddress
AccountOwner Name Address Birthdate TaxExempt	Customer Cname CAddress Cphone	Partial structural match of AccountOwner and Customer

Match Cardinality				
Local match cardinalities	S1 element(s)	S2 element(s)	Matching expression	
1:1, element level	Price	Amount	Amount = Price	
n:1, element- level	Price, Tax	Cost	Cost = Price * (1 + Tax/100)	
1:n, element- level	Name	FirstName, LastName	FirstName, LastName = Extract(Name,)	
n:1, structure- level (n:m element- level)	B.Title, B.PuNo, P.PuNo, P.Name	A.Book, A.Publisher	A.Book, A.Publisher = select B.Title, P.Name from B, P where B.PuNo = P.PuNo	

Linguistic Approaches

- Use names and text (i.e., words or sentences) to find semantically similar schema elements.
- Description Matching
 - Schemas contain comments in natural language to express the intended semantics of schema elements.
 - Ex. S1: empn //employee name
 - Ex. S2: name //name of employee
 - These comments can also be evaluated linguistically to determine the similarity between schema elements.
 - Analysis could be as simple as extracting keywords from the description
 - Or it could be as sophisticated as using natural language understanding technology to look for semantically equivalent expressions.

Combining Matchers

- A matcher that uses just one approach is unlikely to achieve as many good match candidates as one that combines several approaches.
- Two ways of achieving this
 - A hybrid matcher that integrates multiple matching criteria
 - A composite matchers that combine the results of independently executed matchers.
- Hybrid matchers provide better match candidates and better performance.
 - Poor match candidates matching only one of several criteria can be filtered out early.
 - Complex matches requiring the joint consideration of multiple criteria can be solved
 - Reduce the number of passes over the schema.