
Contents

7 Classi�cation and Prediction 3

7.1 What is classi�cation? What is prediction? . 3

7.2 Issues regarding classi�cation and prediction . 5

7.3 Classi�cation by decision tree induction . 6

7.3.1 Decision tree induction . 7

7.3.2 Tree pruning . 9

7.3.3 Extracting classi�cation rules from decision trees . 10

7.3.4 Enhancements to basic decision tree induction . 11

7.3.5 Scalability and decision tree induction . 12

7.3.6 Integrating data warehousing techniques and decision tree induction 13

7.4 Bayesian classi�cation . 15

7.4.1 Bayes theorem . 15

7.4.2 Naive Bayesian classi�cation . 16

7.4.3 Bayesian belief networks . 17

7.4.4 Training Bayesian belief networks . 19

7.5 Classi�cation by backpropagation . 19

7.5.1 A multilayer feed-forward neural network . 20

7.5.2 De�ning a network topology . 21

7.5.3 Backpropagation . 21

7.5.4 Backpropagation and interpretability . 24

7.6 Association-based classi�cation . 25

7.7 Other classi�cation methods . 27

7.7.1 k-nearest neighbor classi�ers . 27

7.7.2 Case-based reasoning . 28

7.7.3 Genetic algorithms . 28

7.7.4 Rough set theory . 28

7.7.5 Fuzzy set approaches . 29

7.8 Prediction . 30

7.8.1 Linear and multiple regression . 30

7.8.2 Nonlinear regression . 32

7.8.3 Other regression models . 32

7.9 Classi�er accuracy . 33

7.9.1 Estimating classi�er accuracy . 33

7.9.2 Increasing classi�er accuracy . 34

7.9.3 Is accuracy enough to judge a classi�er? . 34

7.10 Summary . 35

1

Bzupages.com

2 CONTENTS

Chapter 7

Classi�cation and Prediction

cJ. Han and M. Kamber, 1998, DRAFT!! DO NOT COPY!! DO NOT DISTRIBUTE!! September 15, 1999

Databases are rich with hidden information that can be used for making intelligent business decisions. Classi-
�cation and prediction are two forms of data analysis which can be used to extract models describing important
data classes or to predict future data trends. Whereas classi�cation predicts categorical labels (or discrete values),
prediction models continuous-valued functions. For example, a classi�cation model may be built to categorize bank
loan applications as either safe or risky, while a prediction model may be built to predict the expenditures of po-
tential customers on computer equipment given their income and occupation. Many classi�cation and prediction
methods have been proposed by researchers in machine learning, expert systems, statistics, and neurobiology. Most
algorithms are memory resident, typically assuming a small data size. Recent database mining research has built on
such work, developing scalable classi�cation and prediction techniques capable of handling large, disk resident data.
These techniques often consider parallel and distributed processing.

In this chapter, you will learn basic techniques for data classi�cation such as decision tree induction, Bayesian
classi�cation and Bayesian belief networks, and neural networks. The integration of data warehousing technology
with classi�cation is also discussed, as well as association-based classi�cation. Other approaches to classi�cation, such
as k-nearest neighbor classi�ers, case-based reasoning, genetic algorithms, rough sets, and fuzzy logic techniques are
introduced. Methods for prediction, including linear, nonlinear, and generalized linear regression models are briey
discussed. Where applicable, you will learn of modi�cations, extensions and optimizations to these techniques for
their application to data classi�cation and prediction for large databases.

7.1 What is classi�cation? What is prediction?

Data classi�cation is a two step process (Figure 7.1). In the �rst step, a model is built describing a predetermined
set of data classes or concepts. The model is constructed by analyzing database tuples described by attributes. Each
tuple is assumed to belong to a prede�ned class, as determined by one of the attributes, called the class label

attribute. In the context of classi�cation, data tuples are also referred to as samples, examples, or objects. The
data tuples analyzed to build the model collectively form the training data set. The individual tuples making
up the training set are referred to as training samples and are randomly selected from the sample population.
Since the class label of each training sample is provided, this step is also known as supervised learning (i.e., the
learning of the model is `supervised' in that it is told to which class each training sample belongs). It contrasts with
unsupervised learning (or clustering), in which the class labels of the training samples are not known, and the
number or set of classes to be learned may not be known in advance. Clustering is the topic of Chapter 8.

Typically, the learned model is represented in the form of classi�cation rules, decision trees, or mathematical
formulae. For example, given a database of customer credit information, classi�cation rules can be learned to
identify customers as having either excellent or fair credit ratings (Figure 7.1a). The rules can be used to categorize
future data samples, as well as provide a better understanding of the database contents.

In the second step (Figure 7.1b), the model is used for classi�cation. First, the predictive accuracy of the model
(or classi�er) is estimated. Section 7.9 of this chapter describes several methods for estimating classi�er accuracy.
The holdout method is a simple technique which uses a test set of class-labeled samples. These samples are

3

4 CHAPTER 7. CLASSIFICATION AND PREDICTION

Training

 Data

Classification

 Rules

Classification

 Algorithm

< 30

< 30

30 - 40

> 40

> 40

30 - 40

low

low

high

med

med

high

...

Sandy Jones

Bill Lee

Susan Lake

Claire Phips

Andre Beau

Courtney Fox

...

fair

fair

fair

excellent

excellent

excellent

...

name age income credit rating

a)

IF age 30-40

AND income=high

THEN

 credit_rating=excellent

Classification

 Rules

New

Data

(John Henri, 30-40, high)

Credit rating?

 Data

Test

fair

...

fair

excellent

name age income credit rating

< 30

30 - 40

low

Frank Jones

Sylvia Crest

Anne Yee
...... ...

> 40 high

high

b)

excellent

Figure 7.1: The data classi�cation process: a) Learning: Training data are analyzed by a classi�cation algorithm.
Here, the class label attribute is credit rating, and the learned model or classi�er is represented in the form of
classi�cation rules. b) Classi�cation: Test data are used to estimate the accuracy of the classi�cation rules. If the
accuracy is considered acceptable, the rules can be applied to the classi�cation of new data tuples.

randomly selected and are independent of the training samples. The accuracy of a model on a given test set is the
percentage of test set samples that are correctly classi�ed by the model. For each test sample, the known class label
is compared with the learned model's class prediction for that sample. Note that if the accuracy of the model were
estimated based on the training data set, this estimate could be optimistic since the learned model tends to over�t
the data (that is, it may have incorporated some particular anomalies of the training data which are not present in
the overall sample population). Therefore, a test set is used.

If the accuracy of the model is considered acceptable, the model can be used to classify future data tuples or
objects for which the class label is not known. (Such data are also referred to in the machine learning literature
as \unknown" or \previously unseen" data). For example, the classi�cation rules learned in Figure 7.1a from the
analysis of data from existing customers can be used to predict the credit rating of new or future (i.e., previously
unseen) customers.

\How is prediction di�erent from classi�cation?" Prediction can be viewed as the construction and use of a
model to assess the class of an unlabeled object, or to assess the value or value ranges of an attribute that a given
object is likely to have. In this view, classi�cation and regression are the two major types of prediction problems
where classi�cation is used to predict discrete or nominal values, while regression is used to predict continuous or

7.2. ISSUES REGARDING CLASSIFICATION AND PREDICTION 5

ordered values. In our view, however, we refer to the use of predication to predict class labels as classi�cation and
the use of predication to predict continuous values (e.g., using regression techniques) as prediction. This view is
commonly accepted in data mining.

Classi�cation and prediction have numerous applications including credit approval, medical diagnosis, perfor-
mance prediction, and selective marketing.

Example 7.1 Suppose that we have a database of customers on the AllElectronics mailing list. The mailing list
is used to send out promotional literature describing new products and upcoming price discounts. The database
describes attributes of the customers, such as their name, age, income, occupation, and credit rating. The customers
can be classi�ed as to whether or not they have purchased a computer at AllElectronics. Suppose that new customers
are added to the database and that you would like to notify these customers of an uncoming computer sale. To send
out promotional literature to every new customer in the database can be quite costly. A more cost e�cient method
would be to only target those new customers who are likely to purchase a new computer. A classi�cation model can
be constructed and used for this purpose.

Suppose instead that you would like to predict the number of major purchases that a customer will make at
AllElectronics during a �scal year. Since the predicted value here is ordered, a prediction model can be constructed
for this purpose. 2

7.2 Issues regarding classi�cation and prediction

Preparing the data for classi�cation and prediction. The following preprocessing steps may be applied to the
data in order to help improve the accuracy, e�ciency, and scalability of the classi�cation or prediction process.

� Data cleaning. This refers to the preprocessing of data in order to remove or reduce noise (by applying
smoothing techniques, for example), and the treatment of missing values (e.g., by replacing a missing value
with the most commonly occurring value for that attribute, or with the most probable value based on statistics).
Although most classi�cation algorithms have some mechanisms for handling noisy or missing data, this step
can help reduce confusion during learning.

� Relevance analysis. Many of the attributes in the data may be irrelevant to the classi�cation or prediction
task. For example, data recording the day of the week on which a bank loan application was �led is unlikely to
be relevant to the success of the application. Furthermore, other attributes may be redundant. Hence, relevance
analysis may be performed on the data with the aim of removing any irrelevant or redundant attributes from
the learning process. In machine learning, this step is known as feature selection. Including such attributes
may otherwise slow down, and possibly mislead, the learning step.

Ideally, the time spent on relevance analysis, when added to the time spent on learning from the resulting
\reduced" feature subset, should be less than the time that would have been spent on learning from the
original set of features. Hence, such analysis can help improve classi�cation e�ciency and scalability.

� Data transformation. The data can be generalized to higher-level concepts. Concept hierarchies may be
used for this purpose. This is particularly useful for continuous-valued attributes. For example, numeric values
for the attribute income may be generalized to discrete ranges such as low, medium, and high. Similarly,
nominal-valued attributes, like street, can be generalized to higher-level concepts, like city. Since generalization
compresses the original training data, fewer input/output operations may be involved during learning.

The data may also be normalized, particularly when neural networks or methods involving distance measure-
ments are used in the learning step. Normalization involves scaling all values for a given attribute so that
they fall within a small speci�ed range, such as -1.0 to 1.0, or 0 to 1.0. In methods which use distance measure-
ments, for example, this would prevent attributes with initially large ranges (like, say income) from outweighing
attributes with initially smaller ranges (such as binary attributes).

Data cleaning, relevance analysis, and data transformation are described in greater detail in Chapter 3 of this
book.

Comparing classi�cation methods. Classi�cation and prediction methods can be compared and evaluated ac-
cording to the following criteria:

6 CHAPTER 7. CLASSIFICATION AND PREDICTION

no

yes

yesyesno

age?

student? credit_rating?

<30 30-40 >40

no yes excellent fair

Figure 7.2: A decision tree for the concept buys computer, indicating whether or not a customer at AllElectronics
is likely to purchase a computer. Each internal (non-leaf) node represents a test on an attribute. Each leaf node
represents a class (either buys computer = yes or buys computer = no).

1. Predictive accuracy. This refers to the ability of the model to correctly predict the class label of new or
previously unseen data.

2. Speed. This refers to the computation costs involved in generating and using the model.

3. Robustness. This is the ability of the model to make correct predictions given noisy data or data with missing
values.

4. Scalability. This refers to the ability of the learned model to perform e�ciently on large amounts of data.

5. Interpretability. This refers is the level of understanding and insight that is provided by the learned model.

These issues are discussed throughout the chapter. The database research community's contributions to classi�-
cation and prediction for data mining have strongly emphasized the scalability aspect, particularly with respect to
decision tree induction.

7.3 Classi�cation by decision tree induction

\What is a decision tree?"

A decision tree is a ow-chart-like tree structure, where each internal node denotes a test on an attribute, each
branch represents an outcome of the test, and leaf nodes represent classes or class distributions. The topmost node
in a tree is the root node. A typical decision tree is shown in Figure 7.2. It represents the concept buys computer,
that is, it predicts whether or not a customer at AllElectronics is likely to purchase a computer. Internal nodes are
denoted by rectangles, and leaf nodes are denoted by ovals.

In order to classify an unknown sample, the attribute values of the sample are tested against the decision tree.
A path is traced from the root to a leaf node which holds the class prediction for that sample. Decision trees can
easily be converted to classi�cation rules.

In Section 7.3.1, we describe a basic algorithm for learning decision trees. When decision trees are built, many
of the branches may reect noise or outliers in the training data. Tree pruning attempts to identify and remove
such branches, with the goal of improving classi�cation accuracy on unseen data. Tree pruning is described in
Section 7.3.2. The extraction of classi�cation rules from decision trees is discussed in Section 7.3.3. Enhancements of
the basic decision tree algorithm are given in Section 7.3.4. Scalability issues for the induction of decision trees from
large databases are discussed in Section 7.3.5. Section 7.3.6 describes the integration of decision tree induction with
data warehousing facilities, such as data cubes, allowing the mining of decision trees at multiple levels of granularity.
Decision trees have been used in many application areas ranging frommedicine to game theory and business. Decision
trees are the basis of several commercial rule induction systems.

7.3. CLASSIFICATION BY DECISION TREE INDUCTION 7

Algorithm 7.3.1 (Generate decision tree) Generate a decision tree from the given training data.

Input: The training samples, samples, represented by discrete-valued attributes; the set of candidate attributes, attribute-list.

Output: A decision tree.

Method:

1) create a node N ;
2) if samples are all of the same class, C then

3) return N as a leaf node labeled with the class C;

4) if attribute-list is empty then
5) return N as a leaf node labeled with the most common class in samples; // majority voting

6) select test-attribute, the attribute among attribute-list with the highest information gain;

7) label node N with test-attribute;
8) for each known value ai of test-attribute // partition the samples

9) grow a branch from node N for the condition test-attribute=ai;

10) let si be the set of samples in samples for which test-attribute=ai; // a partition
11) if si is empty then

12) attach a leaf labeled with the most common class in samples;

13) else attach the node returned by Generate decision tree(si, attribute-list - test-attribute);

2

Figure 7.3: Basic algorithm for inducing a decision tree from training samples.

7.3.1 Decision tree induction

The basic algorithm for decision tree induction is a greedy algorithmwhich constructs decision trees in a top-down
recursive divide-and-conquer manner. The algorithm, summarized in Figure 7.3, is a version of ID3, a well-known
decision tree induction algorithm. Extensions to the algorithm are discussed in Sections 7.3.2 to 7.3.6.

The basic strategy is as follows:

� The tree starts as a single node representing the training samples (step 1).

� If the samples are all of the same class, then the node becomes a leaf and is labeled with that class (steps 2
and 3).

� Otherwise, the algorithm uses an entropy-based measure known as information gain as a heuristic for selecting
the attribute that will best separate the samples into individual classes (step 6). This attribute becomes the
\test" or \decision" attribute at the node (step 7). In this version of the algorithm, all attributes are categorical,
i.e., discrete-valued. Continuous-valued attributes must be discretized.

� A branch is created for each known value of the test attribute, and the samples are partitioned accordingly
(steps 8-10).

� The algorithm uses the same process recursively to form a decision tree for the samples at each partition. Once
an attribute has occurred at a node, it need not be considered in any of the node's descendents (step 13).

� The recursive partitioning stops only when any one of the following conditions is true:

1. All samples for a given node belong to the same class (step 2 and 3), or

2. There are no remaining attributes on which the samples may be further partitioned (step 4). In this case,
majority voting is employed (step 5). This involves converting the given node into a leaf and labeling it
with the class in majority among samples. Alternatively, the class distribution of the node samples may
be stored; or

3. There are no samples for the branch test-attribute=ai (step 11). In this case, a leaf is created with the
majority class in samples (step 12).

8 CHAPTER 7. CLASSIFICATION AND PREDICTION

Attribute selection measure. The information gain measure is used to select the test attribute at each node
in the tree. Such a measure is referred to as an attribute selection measure or a measure of the goodness of split. The
attribute with the highest information gain (or greatest entropy reduction) is chosen as the test attribute for the
current node. This attribute minimizes the information needed to classify the samples in the resulting partitions and
reects the least randomness or \impurity" in these partitions. Such an information-theoretic approach minimizes
the expected number of tests needed to classify an object and guarantees that a simple (but not necessarily the
simplest) tree is found.

Let S be a set consisting of s data samples. Suppose the class label attribute has m distinct values de�ning m
distinct classes, Ci (for i = 1; : : : ;m). Let si be the number of samples of S in class Ci. The expected information
needed to classify a given sample is given by:

I(s1; s2; : : : ; sm) = �
mX
i=1

pilog2(pi) (7.1)

where pi is the probability than an arbitrary sample belongs to class Ci and is estimated by si/s. Note that a log

function to the base 2 is used since the information is encoded in bits.

Let attribute A have v distinct values, fa1; a2; � � � ; avg. Attribute A can be used to partition S into v subsets,
fS1; S2; � � � ; Svg, where Sj contains those samples in S that have value aj of A. If A were selected as the test
attribute (i.e., best attribute for splitting), then these subsets would correspond to the branches grown from the
node containing the set S. Let sij be the number of samples of class Ci in a subset Sj . The entropy, or expected
information based on the partitioning into subsets by A is given by:

E(A) =
vX

j=1

s1j + � � �+ smj

s
I(s1j ; : : : ; smj): (7.2)

The term
Pv

j=1

s1j+���+smj

s
acts as the weight of the jth subset and is the number of samples in the subset (i.e.,

having value aj of A) divided by the total number of samples in S. The smaller the entropy value is, the greater the
purity of the subset partitions. The encoding information that would be gained by branching on A is

Gain(A) = I(s1; s2; : : : ; sm)� E(A): (7.3)

In other words, Gain(A) is the expected reduction in entropy caused by knowing the value of attribute A.

The algorithm computes the information gain of each attribute. The attribute with the highest information gain
is chosen as the test attribute for the given set S. A node is created and labeled with the attribute, branches are
created for each value of the attribute, and the samples are partitioned accordingly.

Example 7.2 Induction of a decision tree. Table 7.1 presents a training set of data tuples taken from the AllElec-
tronics customer database. (The data are adapted from [Quinlan 1986b]). The class label attribute, buys computer,
has two distinct values (namely fyes, nog), therefore, there are two distinct classes (m = 2). Let C1 correspond to
the class yes and class C2 correspond to no. There are 9 samples of class yes and 5 samples of class no. To compute
the information gain of each attribute, we �rst use Equation (7.1) to compute the expected information needed to
classify a given sample. This is:

I(s1; s2) = I(9; 5) = � 9

14
log2

9

14
� 5

14
log2

5

14
= 0:940

Next, we need to compute the entropy of each attribute. Let's start with the attribute age. We need to look at
the distribution of yes and no samples for each value of age. We compute the expected information for each of these
distributions.

for age = \<30": s11 = 2 s21 = 3 I(s11; s21) = 0.971
for age = \30-40": s12 = 4 s22 = 0 I(s12; s22) = 0
for age = \>40": s13 = 3 s23 = 2 I(s13; s23) = 0.971

7.3. CLASSIFICATION BY DECISION TREE INDUCTION 9

rid age income student credit rating Class: buys computer
1 <30 high no fair no
2 <30 high no excellent no
3 30-40 high no fair yes
4 >40 medium no fair yes
5 >40 low yes fair yes
6 >40 low yes excellent no
7 30-40 low yes excellent yes
8 <30 medium no fair no
9 <30 low yes fair yes
10 >40 medium yes fair yes
11 <30 medium yes excellent yes
12 30-40 medium no excellent yes
13 30-40 high yes fair yes
14 >40 medium no excellent no

Table 7.1: Training data tuples from the AllElectronics customer database.

Using Equation (7.2), the expected information needed to classify a given sample if the samples are partitioned
according to age, is:

E(age) =
5

14
I(s11; s21) +

4

14
I(s12; s22) +

5

14
I(s13; s23) = 0:694:

Hence, the gain in information from such a partitioning would be:

Gain(age) = I(s1; s2)� E(age) = 0:246

Similarly, we can compute Gain(income) = 0.029, Gain(student) = 0.151, and Gain(credit rating) = 0.048. Since
age has the highest information gain among the attributes, it is selected as the test attribute. A node is created
and labeled with age, and branches are grown for each of the attribute's values. The samples are then partitioned
accordingly, as shown in Figure 7.4. Notice that the samples falling into the partition for age = 30-40 all belong to
the same class. Since they all belong to class yes, a leaf should therefore be created at the end of this branch and
labeled with yes. The �nal decision tree returned by the algorithm is shown in Figure 7.2. 2

In summary, decision tree induction algorithms have been used for classi�cation in a wide range of application
domains. Such systems do not use domain knowledge. The learning and classi�cation steps of decision tree induction
are generally fast. Classi�cation accuracy is typically high for data where the mapping of classes consists of long and
thin regions in concept space.

7.3.2 Tree pruning

When a decision tree is built, many of the branches will reect anomalies in the training data due to noise or outliers.
Tree pruning methods address this problem of over�tting the data. Such methods typically use statistical measures
to remove the least reliable branches, generally resulting in faster classi�cation and an improvement in the ability of
the tree to correctly classify independent test data.

\How does tree pruning work?" There are two common approaches to tree pruning.

� In the prepruning approach, a tree is \pruned" by halting its construction early (e.g., by deciding not to
further split or partition the subset of training samples at a given node). Upon halting, the node becomes a
leaf. The leaf may hold the most frequent class among the subset samples, or the probability distribution of
those samples.

When constructing a tree, measures such as statistical signi�cance, �2, information gain, etc., can be used to
assess the goodness of a split. If partitioning the samples at a node would result in a split that falls below a
prespeci�ed threshold, then further partitioning of the given subset is halted. There are di�culties, however,

10 CHAPTER 7. CLASSIFICATION AND PREDICTION

high

high

medium

low

medium

no

no

no

yes

yes

fair

excellent

fair

fair

excellent

no

no

no

yes

yes

income student credit_rating Class

age?

income student credit_rating Class

high

low

medium

high

no

yes

no

yes

excellent

excellent

fair

fair yes

yes

yes

yes

income student credit_rating Class

medium

low

low

medium

medium

no

yes

yes

yes

no

yes

yes

no

yes

no

fair

fair

excellent

fair

excellent

<30 30-40 >40

Figure 7.4: The attribute age has the highest information gain and therefore becomes a test attribute at the root
node of the decision tree. Branches are grown for each value of age. The samples are shown partitioned according
to each branch.

in choosing an appropriate threshold. High thresholds could result in oversimpli�ed trees, while low thresholds
could result in very little simpli�cation.

� The postpruning approach removes branches from a \fully grown" tree. A tree node is pruned by removing
its branches.

The cost complexity pruning algorithm is an example of the postpruning approach. The pruned node becomes
a leaf and is labeled by the most frequent class among its former branches. For each non-leaf node in the tree,
the algorithm calculates the expected error rate that would occur if the subtree at that node were pruned.
Next, the expected error rate occurring if the node were not pruned is calculated using the error rates for each
branch, combined by weighting according to the proportion of observations along each branch. If pruning the
node leads to a greater expected error rate, then the subtree is kept. Otherwise, it is pruned. After generating
a set of progressively pruned trees, an independent test set is used to estimate the accuracy of each tree. The
decision tree that minimizes the expected error rate is preferred.

Rather than pruning trees based on expected error rates, we can prune trees based on the number of bits
required to encode them. The \best pruned tree" is the one that minimizes the number of encoding bits. This
method adopts the Minimum Description Length (MDL) principle which follows the notion that the simplest
solution is preferred. Unlike cost complexity pruning, it does not require an independent set of samples.

Alternatively, prepruning and postpruning may be interleaved for a combined approach. Postpruning requires
more computation than prepruning, yet generally leads to a more reliable tree.

7.3.3 Extracting classi�cation rules from decision trees

\Can I get classi�cation rules out of my decision tree? If so, how?"

The knowledge represented in decision trees can be extracted and represented in the form of classi�cation IF-
THEN rules. One rule is created for each path from the root to a leaf node. Each attribute-value pair along a given
path forms a conjunction in the rule antecedent (\IF" part). The leaf node holds the class prediction, forming the
rule consequent (\THEN" part). The IF-THEN rules may be easier for humans to understand, particularly if the
given tree is very large.

7.3. CLASSIFICATION BY DECISION TREE INDUCTION 11

Example 7.3 Generating classi�cation rules from a decision tree. The decision tree of Figure 7.2 can be
converted to classi�cation IF-THEN rules by tracing the path from the root node to each leaf node in the tree. The
rules extracted from Figure 7.2 are:

IF age = \<30" AND student = no THEN buys computer = no

IF age = \<30" AND student = yes THEN buys computer = yes

IF age = \30-40" THEN buys computer = yes

IF age = \>40" AND credit rating = excellent THEN buys computer = yes

IF age = \>40" AND credit rating = fair THEN buys computer = no

2

C4.5, a later version of the ID3 algorithm, uses the training samples to estimate the accuracy of each rule. Since
this would result in an optimistic estimate of rule accuracy, C4.5 employs a pessimistic estimate to compensate for
the bias. Alternatively, a set of test samples independent from the training set can be used to estimate rule accuracy.

A rule can be \pruned" by removing any condition in its antecedent that does not improve the estimated accuracy
of the rule. For each class, rules within a class may then be ranked according to their estimated accuracy. Since it
is possible that a given test sample will not satisfy any rule antecedent, a default rule assigning the majority class is
typically added to the resulting rule set.

7.3.4 Enhancements to basic decision tree induction

\What are some enhancements to basic decision tree induction?"

Many enhancements to the basic decision tree induction algorithm of Section 7.3.1 have been proposed. In this
section, we discuss several major enhancements, many of which are incorporated into C4.5, a successor algorithm to
ID3.

The basic decision tree induction algorithm of Section 7.3.1 requires all attributes to be categorical or discretized.
The algorithm can be modi�ed to allow for continuous-valued attributes. A test on a continuous-valued attribute A
results in two branches, corresponding to the conditions A � V and A > V for some numeric value, V , of A. Given
v values of A, then v� 1 possible splits are considered in determining V . Typically, the midpoints between each pair
of adjacent values are considered. If the values are sorted in advance, then this requires only one pass through the
values.

The basic algorithm for decision tree induction creates one branch for each value of a test attribute, and then
distributes the samples accordingly. This partitioning can result in numerous small subsets. As the subsets become
smaller and smaller, the partitioning process may end up using sample sizes that are statistically insu�cient. The
detection of useful patterns in the subsets may become impossible due to insu�ciency of the data. One alternative
is to allow for the grouping of categorical attribute values. A tree node may test whether the value of an attribute
belongs to a given set of values, such as Ai 2 fa1; a2; : : : ; ang. Another alternative is to create binary decision trees,
where each branch holds a boolean test on an attribute. Binary trees result in less fragmentation of the data. Some
empirical studies have found that binary decision trees tend to be more accurate that traditional decision trees.

The information gain measure is biased in that it tends to prefer attributes with many values. Many alternatives
have been proposed, such as gain ratio, which considers the probability of each attribute value. Various other selection
measures exist, including the gini index, the �2 contingency table statistic, and the G-statistic.

Many methods have been proposed for handling missing attribute values. A missing or unknown value for an
attribute A may be replaced by the most common value for A, for example. Alternatively, the apparent information
gain of attribute A can be reduced by the proportion of samples with unknown values of A. In this way, \fractions"
of a sample having a missing value can be partitioned into more than one branch at a test node. Other methods
may look for the most probable value of A, or make use of known relationships between A and other attributes.

Incremental versions of decision tree induction have been proposed. When given new training data, these
restructure the decision tree acquired from learning on previous training data, rather than relearning a new tree
\from scratch".

Additional enhancements to basic decision tree induction which address scalability, and the integration of data
warehousing techniques, are discussed in Sections 7.3.5 and 7.3.6, respectively.

12 CHAPTER 7. CLASSIFICATION AND PREDICTION

7.3.5 Scalability and decision tree induction

\How scalable is decision tree induction?"

The e�ciency of existing decision tree algorithms, such as ID3 and C4.5, has been well established for relatively
small data sets. E�ciency and scalability become issues of concern when these algorithms are applied to the mining of
very large, real-world databases. Most decision tree algorithms have the restriction that the training samples should
reside in main memory. In data mining applications, very large training sets of millions of samples are common.
Hence, this restriction limits the scalability of such algorithms, where the decision tree construction can become
ine�cient due to swapping of the training samples in and out of main and cache memories.

Early strategies for inducing decision trees from large databases include discretizing continuous attributes, and
sampling data at each node. These, however, still assume that the training set can �t in memory. An alternative
method �rst partitions the data into subsets which individually can �t into memory, and then builds a decision
tree from each subset. The �nal output classi�er combines each classi�er obtained from the subsets. Although this
method allows for the classi�cation of large data sets, its classi�cation accuracy is not as high as the single classi�er
that would have been built using all of the data at once.

rid credit rating age buys computer
1 excellent 38 yes
2 excellent 26 yes
3 fair 35 no
4 excellent 49 no

Table 7.2: Sample data for the class buys computer.

3 4

5 6

0

1 2

credit_rating

excellent

excellent

fair

excellent

rid

1

2

3

4

5

2

3

6

age

26

35

38

49

2

3

1

4

rid rid

1

2

3

4

buys_computer

yes

yes

no

no

Memory Resident -- Class ListDisk Resident -- Attribute List

...

node

...

Figure 7.5: Attribute list and class list data structures used in SLIQ for the sample data of Table 7.2.

More recent decision tree algorithms which address the scalability issue have been proposed. Algorithms for
the induction of decision trees from very large training sets include SLIQ and SPRINT, both of which can handle
categorical and continuous-valued attributes. Both algorithms propose pre-sorting techniques on disk-resident data
sets that are too large to �t in memory. Both de�ne the use of new data structures to facilitate the tree construction.
SLIQ employs disk resident attribute lists and a single memory resident class list. The attribute lists and class lists
generated by SLIQ for the sample data of Table 7.2 are shown in Figure 7.5. Each attribute has an associated
attribute list, indexed by rid (a record identi�er). Each tuple is represented by a linkage of one entry from each
attribute list to an entry in the class list (holding the class label of the given tuple), which in turn is linked to its
corresponding leaf node in the decision tree. The class list remains in memory since it is often accessed and modi�ed
in the building and pruning phases. The size of the class list grows proportionally with the number of tuples in the
training set. When a class list cannot �t into memory, the performance of SLIQ decreases.

SPRINT uses a di�erent attribute list data structure which holds the class and rid information, as shown in
Figure 7.6. When a node is split, the attribute lists are partitioned and distributed among the resulting child nodes

7.3. CLASSIFICATION BY DECISION TREE INDUCTION 13

credit_rating

excellent

excellent

fair

excellent
...

buys_computer

yes

yes

no

no
...

rid

1

2

3

4
...

age

26

35

38

49
...

2

3

1

4

rid

...

buys_computer

y

n

y

n

...

Figure 7.6: Attribute list data structure used in SPRINT for the sample data of Table 7.2.

accordingly. When a list is partitioned, the order of the records in the list is maintained. Hence, partitioning lists
does not require resorting. SPRINT was designed to be easily parallelized, further contributing to its scalability.

While both SLIQ and SPRINT handle disk-resident data sets that are too large to �t into memory, the scalability
of SLIQ is limited by the use of its memory-resident data structure. SPRINT removes all memory restrictions, yet
requires the use of a hash tree proportional in size to the training set. This may become expensive as the training
set size grows.

RainForest is a framework for the scalable induction of decision trees. The method adapts to the amount of main
memory available, and apply to any decision tree induction algorithm. It maintains an AVC-set (Attribute-Value,
Class label) indicating the class distribution for each attribute. RainForest reports a speed-up over SPRINT.

7.3.6 Integrating data warehousing techniques and decision tree induction

Decision tree induction can be integrated with data warehousing techniques for data mining. In this section we
discuss the method of attribute-oriented induction to generalize the given data, and the use of multidimensional
data cubes to store the generalized data at multiple levels of granularity. We then discuss how these approaches
can be integrated with decision tree induction in order to facilitate interactive multilevel mining. The use of a data
mining query language to specify classi�cation tasks is also discussed. In general, the techniques described here are
applicable to other forms of learning as well.

Attribute-oriented induction (AOI) uses concept hierarchies to generalize the training data by replacing lower
level data with higher level concepts (Chapter 5). For example, numerical values for the attribute income may be
generalized to the ranges \<30K", \30K-40K", \>40K", or the categories low, medium, or high. This allows the user
to view the data at more meaningful levels. In addition, the generalized data are more compact than the original
training set, which may result in fewer input/output operations. Hence, AOI also addresses the scalability issue by
compressing the training data.

The generalized training data can be stored in a multidimensional data cube, such as the structure typically
used in data warehousing (Chapter 2). The data cube is a multidimensional data structure, where each dimension
represents an attribute or a set of attributes in the data schema, and each cell stores the value of some aggregate
measure (such as count). Figure 7.7 shows a data cube for customer information data, with the dimensions income,
age, and occupation. The original numeric values of income and age have been generalized to ranges. Similarly,
original values for occupation, such as accountant and banker, or nurse and X-ray technician, have been generalized
to �nance and medical, respectively. The advantage of the multidimensional structure is that it allows fast indexing
to cells (or slices) of the cube. For instance, one may easily and quickly access the total count of customers in
occupations relating to �nance who have an income greater than $40K, or the number of customers who work in the
area of medicine and are less than 40 years old.

Data warehousing systems provide a number of operations that allow mining on the data cube at multiple levels
of granularity. To review, the roll-up operation performs aggregation on the cube, either by climbing up a concept
hierarchy (e.g., replacing the value banker for occupation by the more general, �nance), or by removing a dimension
in the cube. Drill-down performs the reverse of roll-up, by either stepping down a concept hierarchy or adding a
dimension (e.g., time). A slice performs a selection on one dimension of the cube. For example, we may obtain a
data slice for the generalized value accountant of occupation, showing the corresponding income and age data. A
dice performs a selection on two or more dimensions. The pivot or rotate operation rotates the data axes in view

14 CHAPTER 7. CLASSIFICATION AND PREDICTION

< 30 30-40 > 40

> 30K

> 40K

30K-40K

Finance
Medical

Government

Income

Occupation

Age

Figure 7.7: A multidimensional data cube.

in order to provide an alternative presentation of the data. For example, pivot may be used to transform a 3-D cube
into a series of 2-D planes.

The above approaches can be integrated with decision tree induction to provide interactive multilevel mining
of decision trees. The data cube and knowledge stored in the concept hierarchies can be used to induce decision
trees at di�erent levels of abstraction. Furthermore, once a decision tree has been derived, the concept hierarchies
can be used to generalize or specialize individual nodes in the tree, allowing attribute roll-up or drill-down, and
reclassi�cation of the data for the newly speci�ed abstraction level. This interactive feature will allow users to focus
their attention on areas of the tree or data which they �nd interesting.

When integrating AOI with decision tree induction, generalization to a very low (speci�c) concept level can result
in quite large and bushy trees. Generalization to a very high concept level can result in decision trees of little use,
where interesting and important subconcepts are lost due to overgeneralization. Instead, generalization should be to
some intermediate concept level, set by a domain expert or controlled by a user-speci�ed threshold. Hence, the use
of AOI may result in classi�cation trees that are more understandable, smaller, and therefore easier to interpret than
trees obtained from methods operating on ungeneralized (larger) sets of low-level data (such as SLIQ or SPRINT).

A criticism of typical decision tree generation is that, because of the recursive partitioning, some resulting data
subsets may become so small that partitioning them further would have no statistically signi�cant basis. The
maximum size of such \insigni�cant" data subsets can be statistically determined. To deal with this problem, an
exception thresholdmaybe introduced. If the portion of samples in a given subset is less than the threshold, further
partitioning of the subset is halted. Instead, a leaf node is created which stores the subset and class distribution of
the subset samples.

Owing to the large amount and wide diversity of data in large databases, it may not be reasonable to assume
that each leaf node will contain samples belonging to a common class. This problem may be addressed by employing
a precision or classi�cation threshold. Further partitioning of the data subset at a given node is terminated if
the percentage of samples belonging to any given class at that node exceeds this threshold.

A data mining query language may be used to specify and facilitate the enhanced decision tree induction method.
Suppose that the data mining task is to predict the credit risk of customers aged 30-40, based on their income and
occupation. This may be speci�ed as the following data mining query:

mine classi�cation

analyze credit risk
in relevance to income, occupation
from Customer db
where (age >= 30) and (age < 40)
display as rules

7.4. BAYESIAN CLASSIFICATION 15

The above query, expressed in DMQL1, executes a relational query on Customer db to retrieve the task-relevant
data. Tuples not satisfying the where clause are ignored, and only the data concerning the attributes speci�ed in the
in relevance to clause, and the class label attribute (credit risk) are collected. AOI is then performed on this data.
Since the query has not speci�ed which concept hierarchies to employ, default hierarchies are used. A graphical user
interface may be designed to facilitate user speci�cation of data mining tasks via such a data mining query language.
In this way, the user can help guide the automated data mining process.

Hence, many ideas from data warehousing can be integrated with classi�cation algorithms, such as decision tree
induction, in order to facilitate data mining. Attribute-oriented induction employs concept hierarchies to generalize
data to multiple abstraction levels, and can be integrated with classi�cation methods in order to perform multilevel
mining. Data can be stored in multidimensional data cubes to allow quick accessing to aggregate data values. Finally,
a data mining query language can be used to assist users in interactive data mining.

7.4 Bayesian classi�cation

\What are Bayesian classi�ers"?

Bayesian classi�ers are statistical classi�ers. They can predict class membership probabilities, such as the prob-
ability that a given sample belongs to a particular class.

Bayesian classi�cation is based on Bayes theorem, described below. Studies comparing classi�cation algorithms
have found a simple Bayesian classi�er known as the naive Bayesian classi�er to be comparable in performance with
decision tree and neural network classi�ers. Bayesian classi�ers have also exhibited high accuracy and speed when
applied to large databases.

Naive Bayesian classi�ers assume that the e�ect of an attribute value on a given class is independent of the
values of the other attributes. This assumption is called class conditional independence. It is made to simplify the
computations involved, and in this sense, is considered \naive". Bayesian belief networks are graphical models, which
unlike naive Bayesian classi�ers, allow the representation of dependencies among subsets of attributes. Bayesian belief
networks can also be used for classi�cation.

Section 7.4.1 reviews basic probability notation and Bayes theorem. You will then learn naive Bayesian classi�-
cation in Section 7.4.2. Bayesian belief networks are described in Section 7.4.3.

7.4.1 Bayes theorem

Let X be a data sample whose class label is unknown. Let H be some hypothesis, such as that the data sample X
belongs to a speci�ed class C. For classi�cation problems, we want to determine P (HjX), the probability that the
hypothesis H holds given the observed data sample X.

P (HjX) is the posterior probability, or a posteriori probability, of H conditioned on X. For example, suppose
the world of data samples consists of fruits, described by their color and shape. Suppose that X is red and round,
and that H is the hypothesis that X is an apple. Then P (HjX) reects our con�dence that X is an apple given that
we have seen that X is red and round. In contrast, P (H) is the prior probability, or a priori probability of H.
For our example, this is the probability that any given data sample is an apple, regardless of how the data sample
looks. The posterior probability, P (HjX) is based on more information (such as background knowledge) than the
prior probability, P (H), which is independent of X.

Similarly, P (XjH) is the posterior probability of X conditioned on H. That is, it is the probability that X is
red and round given that we know that it is true that X is an apple. P (X) is the prior probability of X. Using our
example, it is the probability that a data sample from our set of fruits is red and round.

\How are these probabilities estimated?" P (X), P (H), and P (XjH) may be estimated from the given data, as we
shall see below. Bayes theorem is useful in that it provides a way of calculating the posterior probability, P (HjX)
from P (H), P (X), and P (XjH). Bayes theorem is:

P (HjX) =
P (XjH)P (H)

P (X)
(7.4)

In the next section, you will learn how Bayes theorem is used in the naive Bayesian classi�er.

1The use of a data mining query language to specify data mining queries is discussed in Chapter 4, using the SQL-based DMQL

language.

16 CHAPTER 7. CLASSIFICATION AND PREDICTION

7.4.2 Naive Bayesian classi�cation

The naive Bayesian classi�er, or simple Bayesian classi�er, works as follows:

1. Each data sample is represented by an n-dimensional feature vector, X = (x1; x2; : : : ; xn), depicting n mea-
surements made on the sample from n attributes, respectively A1; A2; ::; An.

2. Suppose that there are m classes, C1; C2; : : : ; Cm. Given an unknown data sample, X (i.e., having no class
label), the classi�er will predict that X belongs to the class having the highest posterior probability, conditioned
on X. That is, the naive Bayesian classi�er assigns an unknown sample X to the class Ci if and only if :

P (CijX) > P (CjjX) for 1 � j � m; j 6= i.

Thus we maximize P (CijX). The class Ci for which P (CijX) is maximized is called the maximum posteriori

hypothesis. By Bayes theorem (Equation (7.4)),

P (CijX) =
P (XjCi)P (Ci)

P (X)
: (7.5)

3. As P (X) is constant for all classes, only P (XjCi)P (Ci) need be maximized. If the class prior probabilities are
not known, then it is commonly assumed that the classes are equally likely, i.e. P (C1) = P (C2) = : : : = P (Cm),
and we would therefore maximize P (XjCi). Otherwise, we maximize P (XjCi)P (Ci). Note that the class prior
probabilities may be estimated by P (Ci) =

si
s
, where si is the number of training samples of class Ci, and s is

the total number of training samples.

4. Given data sets with many attributes, it would be extremely computationally expensive to compute P (XjCi). In
order to reduce computation in evaluatingP (XjCi), the naive assumption of class conditional independence
is made. This presumes that the values of the attributes are conditionally independent of one another, given
the class label of the sample, i.e., that there are no dependence relationships among the attributes. Thus,

P (XjCi) =
nY

k=1

P (xkjCi): (7.6)

The probabilities P (x1jCi); P (x2jCi); : : : ; P (xnjCi) can be estimated from the training samples, where:

(a) If Ak is categorical, then P (xkjCi) =
sik
si
, where sik is the number of training samples of class Ci having

the value xk for Ak, and si is the number of training samples belonging to Ci.

(b) If Ak is continuous-valued, then the attribute is assumed to have a Gaussian distribution. Therefore,

P (xkjCi) = g(xk; �Ci; �Ci) =
1p

2��Ci
e
�

(x��Ci
)2

2�2
Ci ; (7.7)

where g(xk; �Ci; �Ci) is the Gaussian (normal) density function for attribute Ak, while �Ci and �Ci
are the mean and variance respectively given the values for attribute Ak for training samples of class Ci.

5. In order to classify an unknown sample X, P (XjCi)P (Ci) is evaluated for each class Ci. Sample X is then
assigned to the class Ci if and only if :

P (XjCi)P (Ci) > P (XjCj)P (Cj) for 1 � j � m; j 6= i.

In other words, it is assigned to the class, Ci, for which P (XjCi)P (Ci) is the maximum.

7.4. BAYESIAN CLASSIFICATION 17

\How e�ective are Bayesian classi�ers?"

In theory, Bayesian classi�ers have the minimum error rate in comparison to all other classi�ers. However, in
practice this is not always the case owing to inaccuracies in the assumptions made for its use, such as class conditional
independence, and the lack of available probability data. However, various empirical studies of this classi�er in
comparison to decision tree and neural network classi�ers have found it to be comparable in some domains.

Bayesian classi�ers are also useful in that they provide a theoretical justi�cation for other classi�ers which do not
explicitly use Bayes theorem. For example, under certain assumptions, it can be shown that many neural network
and curve �tting algorithms output the maximum posteriori hypothesis, as does the naive Bayesian classi�er.

Example 7.4 Predicting a class label using naive Bayesian classi�cation. We wish to predict the class
label of an unknown sample using naive Bayesian classi�cation, given the same training data as in Example 7.2 for
decision tree induction. The training data are in Table 7.1. The data samples are described by the attributes age,
income, student, and credit rating. The class label attribute, buys computer, has two distinct values (namely fyes,
nog). Let C1 correspond to the class buys computer = yes and C2 correspond to buys computer = no. The unknown
sample we wish to classify is

X = (age = \<30", income = medium, student = yes, credit rating = fair).

We need to maximize P (XjCi)P (Ci), for i = 1, 2. P (Ci), the prior probability of each class, can be computed
based on the training samples:

P (buys computer = yes) = 9=14 = 0:643
P (buys computer = no) = 5=14 = 0:357

To compute P (XjCi), for i = 1, 2, we compute the following conditional probabilities:

P(age = \<30" j buys computer = yes) = 2=9 = 0:222
P(age = \<30" j buys computer = no) = 3=5 = 0:600
P(income = medium j buys computer = yes) = 4=9 = 0:444
P(income = medium j buys computer = no) = 2=5 = 0:400
P(student = yes j buys computer = yes) = 6=9 = 0:667
P(student = yes j buys computer = no) = 1=5 = 0:200
P(credit rating = fair j buys computer = yes) = 6=9 = 0:667
P(credit rating = fair j buys computer = no) = 2=5 = 0:400

Using the above probabilities, we obtain

P (Xjbuys computer = yes) = 0:222� 0:444� 0:667� 0:667 = 0:044
P (Xjbuys computer = no) = 0:600� 0:400� 0:200� 0:400 = 0:019

P (Xjbuys computer = yes)P (buys computer = yes) = 0:044� 0:643 = 0:028
P (Xjbuys computer = no)P (buys computer = no) = 0:019� 0:357 = 0:007

Therefore, the naive Bayesian classi�er predicts \buys computer = yes" for sample X. 2

7.4.3 Bayesian belief networks

The naive Bayesian classi�er makes the assumption of class conditional independence, i.e., that given the class label
of a sample, the values of the attributes are conditionally independent of one another. This assumption simpli�es
computation. When the assumption holds true, then the naive Bayesian classi�er is the most accurate in comparison
with all other classi�ers. In practice, however, dependencies can exist between variables. Bayesian belief networks
specify joint conditional probability distributions. They allow class conditional independencies to be de�ned between
subsets of variables. They provide a graphical model of causal relationships, on which learning can be performed.
These networks are also known as belief networks, Bayesian networks, and probabilistic networks. For
brevity, we will refer to them as belief networks.

18 CHAPTER 7. CLASSIFICATION AND PREDICTION

 LC

~LC

FH, S

0.8

0.2

FH, ~S

0.5

0.5

~FH, S

0.7

0.3

~FH, ~S

0.1

0.9

FamilyHistory Smoker

LungCancer Emphysema

DyspneaPositiveXRay

a) b)

Figure 7.8: a) A simple Bayesian belief network; b) The conditional probability table for the values of the variable
LungCancer (LC) showing each possible combination of the values of its parent nodes, Family History (FH) and
Smoker (S).

A belief network is de�ned by two components. The �rst is a directed acyclic graph, where each node represents
a random variable, and each arc represents a probabilistic dependence. If an arc is drawn from a node Y to a
node Z, then Y is a parent or immediate predecessor of Z, and Z is a descendent of Y . Each variable is
conditionally independent of its nondescendents in the graph, given its parents. The variables may be discrete or
continuous-valued. They may correspond to actual attributes given in the data, or to \hidden variables" believed to
form a relationship (such as medical syndromes in the case of medical data).

Figure 7.8a) shows a simple belief network, adapted from [Russell et al. 1995a] for six Boolean variables. The
arcs allow a representation of causal knowledge. For example, having lung cancer is inuenced by a person's family
history of lung cancer, as well as whether or not the person is a smoker. Furthermore, the arcs also show that the
variable LungCancer is conditionally independent of Emphysema, given its parents, FamilyHistory and Smoker. This
means that once the values of FamilyHistory and Smoker are known, then the variable Emphysema does not provide
any additional information regarding LungCancer.

The second component de�ning a belief network consists of one conditional probability table (CPT) for each
variable. The CPT for a variable Z speci�es the conditional distribution P (ZjParents(Z)), where Parents(Z)
are the parents of Z. Figure 7.8b) showns a CPT for LungCancer. The conditional probability for each value of
LungCancer is given for each possible combination of values of its parents. For instance, from the upper leftmost
and bottom rightmost entries, respectively, we see that

P (LungCancer = Y es j FamilyHistory = Y es; Smoker = Y es) = 0:8, and
P (LungCancer = No j FamilyHistory = No; Smoker = No) = 0:9.

The joint probability of any tuple (z1; :::; zn) corresponding to the variables or attributes Z1; :::; Zn is computed
by

P (z1; :::; zn) =
nY
i=1

P (zijParents(Zi)); (7.8)

where the values for P (zijParents(Zi)) correspond to the entries in the CPT for Zi.

A node within the network can be selected as an \output" node, representing a class label attribute. There may
be more than one output node. Inference algorithms for learning can be applied on the network. The classi�cation
process, rather than returning a single class label, can return a probability distribution for the class label attribute,
i.e., predicting the probability of each class.

7.5. CLASSIFICATION BY BACKPROPAGATION 19

7.4.4 Training Bayesian belief networks

\How does a Bayesian belief network learn?"

In learning or training a belief network, a number of scenarios are possible. The network structure may be given
in advance, or inferred from the data. The network variables may be observable or hidden in all or some of the
training samples. The case of hidden data is also referred to as missing values or incomplete data.

If the network structure is known and the variables are observable, then learning the network is straightforward.
It consists of computing the CPT entries, as is similarly done when computing the probabilities involved in naive
Bayesian classi�cation.

When the network structure is given and some of the variables are hidden, then a method of gradient descent can
be used to train the belief network. The object is to learn the values for the CPT entries. Let S be a set of s training
samples, X1; X2; ::; Xs. Let wijk be a CPT entry for the variable Yi = yij having the parents Ui = uik. For example,
if wijk is the upper leftmost CPT entry of Figure 7.8b), then Yi is LungCancer; yij is its value, Yes; Ui lists the parent
nodes of Yi, namely fFamilyHistory, Smokerg; and uik lists the values of the parent nodes, namely fYes, Yesg. The
wijk are viewed as weights, analogous to the weights in hidden units of neural networks (Section 7.5). The weights,
wijk, are initialized to random probability values. The gradient descent strategy performs greedy hill-climbing. At
each iteration, the weights are updated, and will eventually converge to a local optimum solution.

The method aims to maximize P (SjH). This is done by following the gradient of lnP (SjH), which makes the
problem simpler. Given the network structure and initialized wijk, the algorithm proceeds as follows.

1. Compute the gradients: For each i; j; k, compute

@lnP (SjH)

@wijk

=
sX

d=1

P (Yi = yij ; Ui = uikjXd)

wijk

(7.9)

The probability in the right-hand side of Equation (7.9) is to be calculated for each training sample Xd in S.
For brevity, let's refer to this probability simply as p. When the variables represented by Yi and Ui are hidden
for some Xd, then the corresponding probability p can be computed from the observed variables of the sample
using standard algorithms for Bayesian network inference (such as those available by the commercial software
package, Hugin).

2. Take a small step in the direction of the gradient: The weights are updated by

wijk wijk + (l)
@lnP (SjH)

@wijk

; (7.10)

where l is the learning rate representing the step size, and @lnP (SjH)

@wijk
is computed from Equation (7.9). The

learning rate is set to a small constant.

3. Renormlize the weights: Because the weights wijk are probability values, they must be between 0 and 1.0,
and
P

j wijk must equal 1 for all i; k. These criteria are achieved by renormalizing the weights after they have
been updated by Equation (7.10).

Several algorithms exist for learning the network structure from the training data given observable variables. The
problem is one of discrete optimization. For solutions, please see the bibliographic notes at the end of this chapter.

7.5 Classi�cation by backpropagation

\What is backpropagation?"

Backpropagation is a neural network learning algorithm. The �eld of neural networks was originally kindled
by psychologists and neurobiologists who sought to develop and test computational analogues of neurons. Roughly

20 CHAPTER 7. CLASSIFICATION AND PREDICTION

x_1

x_2

x_i

w_ij
w_kj

O_j O_k

hidden

layer

input

layer

output

layer

Figure 7.9: A multilayer feed-forward neural network: A training sample, X = (x1; x2; ::; xi), is fed to the input
layer. Weighted connections exist between each layer, where wij denotes the weight from a unit j in one layer to a
unit i in the previous layer.

speaking, a neural network is a set of connected input/output units where each connection has a weight associated
with it. During the learning phase, the network learns by adjusting the weights so as to be able to predict the correct
class label of the input samples. Neural network learning is also referred to as connectionist learning due to the
connections between units.

Neural networks involve long training times, and are therefore more suitable for applications where this is feasible.
They require a number of parameters which are typically best determined empirically, such as the network topology
or \structure". Neural networks have been criticized for their poor interpretability, since it is di�cult for humans
to interpret the symbolic meaning behind the learned weights. These features initially made neural networks less
desirable for data mining.

Advantages of neural networks, however, include their high tolerance to noisy data as well as their ability to
classify patterns on which they have not been trained. In addition, several algorithms have recently been developed
for the extraction of rules from trained neural networks. These factors contribute towards the usefulness of neural
networks for classi�cation in data mining.

The most popular neural network algorithm is the backpropagation algorithm, proposed in the 1980's. In Sec-
tion 7.5.1 you will learn about multilayer feed-forward networks, the type of neural network on which the backprop-
agation algorithm performs. Section 7.5.2 discusses de�ning a network topology. The backpropagation algorithm is
described in Section 7.5.3. Rule extraction from trained neural networks is discussed in Section 7.5.4.

7.5.1 A multilayer feed-forward neural network

The backpropagation algorithm performs learning on a multilayer feed-forward neural network. An example
of such a network is shown in Figure 7.9. The inputs correspond to the attributes measured for each training sample.
The inputs are fed simultaneously into a layer of units making up the input layer. The weighted outputs of these
units are, in turn, fed simultaneously to a second layer of \neuron-like" units, known as a hidden layer. The hidden
layer's weighted outputs can be input to another hidden layer, and so on. The number of hidden layers is arbitrary,
although in practice, usually only one is used. The weighted outputs of the last hidden layer are input to units
making up the output layer, which emits the network's prediction for given samples.

The units in the hidden layers and output layer are sometimes referred to as neurodes, due to their symbolic
biological basis, or as output units. The multilayer neural network shown in Figure 7.9 has two layers of output
units. Therefore, we say that it is a two-layer neural network. Similarly, a network containing two hidden layers is
called a three-layer neural network, and so on. The network is feed-forward in that none of the weights cycle back
to an input unit or to an output unit of a previous layer. It is fully connected in that each unit provides input to
each unit in the next forward layer.

Multilayer feed-forward networks of linear threshold functions, given enough hidden units, can closely approximate
any function.

7.5. CLASSIFICATION BY BACKPROPAGATION 21

7.5.2 De�ning a network topology

\How can I design the topology of the neural network?"

Before training can begin, the user must decide on the network topology by specifying the number of units in
the input layer, the number of hidden layers (if more than one), the number of units in each hidden layer, and the
number of units in the output layer.

Normalizing the input values for each attribute measured in the training samples will help speed up the learning
phase. Typically, input values are normalized so as to fall between 0 and 1.0. Discrete-valued attributes may be
encoded such that there is one input unit per domain value. For example, if the domain of an attribute A is
fa0; a1; a2g, then we may assign three input units to represent A. That is, we may have, say, I0; I1; I2, as input units.
Each unit is initialized to 0. If A = a0, then I0 is set to 1. If A = a1, I1 is set to 1, and so on. One output unit
may be used to represent two classes (where the value 1 represents one class, and the value 0 represents the other).
If there are more than two classes, then 1 output unit per class is used.

There are no clear rules as to the \best" number of hidden layer units. Network design is a trial by error process
and may a�ect the accuracy of the resulting trained network. The initial values of the weights may also a�ect the
resulting accuracy. Once a network has been trained and its accuracy is not considered acceptable, then it is common
to repeat the training process with a di�erent network topology or a di�erent set of initial weights.

7.5.3 Backpropagation

\How does backpropagation work?"

Backpropagation learns by iteratively processing a set of training samples, comparing the network's prediction for
each sample with the actual known class label. For each training sample, the weights are modi�ed so as to minimize
the mean squared error between the network's prediction and the actual class. These modi�cations are made in the
\backwards" direction, i.e., from the output layer, through each hidden layer down to the �rst hidden layer (hence
the name backpropagation). Although it is not guaranteed, in general the weights will eventually converge, and the
learning process stops. The algorithm is summarized in Figure 7.10. Each step is described below.

Initialize the weights. The weights in the network are initialized to small random numbers (e.g., ranging from
-1.0 to 1.0, or -0.5 to 0.5). Each unit has a bias associated with it, as explained below. The biases are similarly
initialized to small random numbers.

Each training sample, X, is processed by the following steps.

Propagate the inputs forward. In this step, the net input and output of each unit in the hidden and output
layers are computed. First, the training sample is fed to the input layer of the network. The net input to each unit
in the hidden and output layers is then computed as a linear combination of its inputs. To help illustrate this, a
hidden layer or output layer unit is shown in Figure 7.11. The inputs to the unit are, in fact, the outputs of the
units connected to it in the previous layer. To compute the net input to the unit, each input connected to the unit
is multiplied by its corresponding weight, and this is summed. Given a unit j in a hidden or output layer, the net
input, Ij, to unit j is:

Ij =
X
i

wijOi + �j (7.11)

where wij is the weight of the connection from unit i in the previous layer to unit j; Oi is the output of unit i from
the previous layer; and �j is the bias of the unit. The bias acts as a threshold in that it serves to vary the activity
of the unit.

Each unit in the hidden and output layers takes its net input, and then applies an activation function to it,
as illustrated in Figure 7.11. The function symbolizes the activation of the neuron represented by the unit. The
logistic, or simoid function is used. Given the net input Ij to unit j, then Oj, the output of unit j, is computed as:

Oj =
1

1 + e�Ij
(7.12)

This function is also referred to as a squashing function, since it maps a large input domain onto the smaller range

22 CHAPTER 7. CLASSIFICATION AND PREDICTION

Algorithm 7.5.1 (Backpropagation) Neural network learning for classi�cation, using the backpropagation algorithm.

Input: The training samples, samples; the learning rate, l; a multilayer feed-forward network, network.

Output: A neural network trained to classify the samples.

Method:

1) Initialize all weights and biases in network;

2) while terminating condition is not satis�ed f
3) for each training sample X in samples f
4) // Propagate the inputs forward:

5) for each hidden or output layer unit j
6) Ij =

P
i
wijOi + �j; //compute the net input of unit j

7) for each hidden or output layer unit j

8) Oj =
1

1+e
�Ij

; // compute the output of each unit j

9) // Backpropagate the errors:

10) for each unit j in the output layer
11) Errj = Oj(1� Oj)(Tj � Oj); // compute the error

12) for each unit j in the hidden layers

13) Errj = Oj(1� Oj)
P

k
Errkwjk; // compute the error

14) for each weight wij in network f
15) �wij = (l)ErrjOi; // weight increment

16) wij = wij +�wij; g // weight update
17) for each bias �j in network f
18) ��j = (l)Errj ; // bias increment

19) �j = �j +��j ; g // bias update
20) g g

2

Figure 7.10: Backpropagation algorithm.

of 0 to 1. The logistic function is nonlinear and di�erentiable, allowing the backpropagation algorithm to model
classi�cation problems that are linearly inseparable.

Backpropagate the error. The error is propagated backwards by updating the weights and biases to reect the
error of the network's prediction. For a unit j in the output layer, the error Errj is computed by:

Errj = Oj(1� Oj)(Tj � Oj) (7.13)

where Oj is the actual output of unit j, and Tj is the true output, based on the known class label of the given
training sample. Note that Oj(1� Oj) is the derivative of the logistic function.

To compute the error of a hidden layer unit j, the weighted sum of the errors of the units connected to unit j in
the next layer are considered. The error of a hidden layer unit j is:

Errj = Oj(1 �Oj)
X
k

Errkwjk (7.14)

where wjk is the weight of the connection from unit j to a unit k in the next higher layer, and Errk is the error of
unit k.

The weights and biases are updated to reect the propagated errors. Weights are updated by Equations (7.15)
and (7.16) below, where �wij is the change in weight wij.

�wij = (l)ErrjOi (7.15)

7.5. CLASSIFICATION BY BACKPROPAGATION 23

x_n

x_1

x_0

f

w_0

w_1

w_n

output

input

vector X

weighted

sum

activation

function

bias

weights

Figure 7.11: A hidden or output layer unit: The inputs are multiplied by their corresponding weights in order to
form a weighted sum, which is added to the bias associated with the unit. A nonlinear activation function is applied
to the net input.

wij = wij +�wij (7.16)

\What is the `l' in Equation 7.15?" The variable l is the learning rate, a constant typically having a value
between 0 and 1:0. Backpropagation learns using a method of gradient descent to search for a set of weights which
can model the given classi�cation problem so as to minimize the mean squared distance between the network's class
predictions and the actual class label of the samples. The learning rate helps to avoid getting stuck at a local
minimum in decision space (i.e., where the weights appear to converge, but are not the optimum solution), and
encourages �nding the global minimum. If the learning rate is too small, then learning will occur at a very slow
pace. If the learning rate is too large, then oscillation between inadequate solutions may occur. A rule of thumb is
to set the learning rate to 1=t, where t is the number of iterations through the training set so far.

Biases are updated by Equations (7.17) and (7.18) below, where ��j is the change in bias �j .

��j = (l)Errj (7.17)

�j = �j +��j (7.18)

Note that here we are updating the weights and biases after the presentation of each sample. This is referred
to as case updating. Alternatively, the weight and bias increments could be accumulated in variables, so that the
weights and biases are updated after all of the samples in the training set have been presented. This latter strategy
is called epoch updating, where one iteration through the training set is an epoch. In theory, the mathematical
derivation of backpropagation employs epoch updating, yet in practice, case updating is more common since it tends
to yield more accurate results.

Terminating condition. Training stops when either

1. all �wij in the previous epoch were so small as to be below some speci�ed threshold, or

2. the percentage of samples misclassi�ed in the previous epoch is below some threshold, or

3. a prespeci�ed number of epochs has expired.

In practice, several hundreds of thousands of epochs may be required before the weights will converge.

24 CHAPTER 7. CLASSIFICATION AND PREDICTION

x_1

x_2

x_3 w_35

w_34

w_25

w_24

w_15

w_14

4

5

6

1

2

3

w_46

w_56

Figure 7.12: An example of a multilayer feed-forward neural network.

Example 7.5 Sample calculations for learning by the backpropagation algorithm. Figure 7.12 shows a
multilayer feed-forward neural network. The initial weight and bias values of the network are given in Table 7.3,
along with the �rst training sample, X = (1; 0; 1).

x1 x2 x3 w14 w15 w24 w25 w34 w35 w46 w56 �4 �5 �6

1 0 1 0.2 -0.3 0.4 0.1 -0.5 0.2 -0.3 -0.2 -0.4 0.2 0.1

Table 7.3: Initial input, weight, and bias values.

This example shows the calculations for backpropagation, given the �rst training sample, X. The sample is fed
into the network, and the net input and output of each unit are computed. These values are shown in Table 7.4.

Unit j Net Input, Ij Output, Oj

4 0:2 + 0� 0:5� 0:4 = �0:7 1=(1 + e0:7) = 0:33
5 �0:3 + 0 + 0:2 + 0:2 = 0:1 1=(1 + e�0:1) = 0:52
6 (0:3)(0:33)� (0:2)(0:52) + 0:1� 0:19 1=(1 + e�0:19) = 0:55

Table 7.4: The net input and output calculations.

The error of each unit is computed and propagated backwards. The error values are shown in Table 7.5. The weight
and bias updates are shown in Table 7.6.

2

Several variations and alternatives to the backpropagation algorithm have been proposed for classi�cation in
neural networks. These may involve the dynamic adjustment of the network topology, and of the learning rate or
other parameters, or the use of di�erent error functions.

7.5.4 Backpropagation and interpretability

\How can I `understand' what the backpropgation network has learned?"

Amajor disadvantage of neural networks lies in their knowledge representation. Acquired knowledge in the form of
a network of units connected by weighted links is di�cult for humans to interpret. This factor has motivated research

7.6. ASSOCIATION-BASED CLASSIFICATION 25

Unit j Errj

6 (0:55)(1� 0:55)(1� 0:55) = 0:495
5 (0:52)(1� 0:52)(0:495)(�0:3) = 0:037
4 (0:33)(1� 0:33)(0:495)(�0:2) = �0:022

Table 7.5: Calculation of the error at each node.

Weight or Bias New Value

w46 �0:3 = (0:9)(0:495)(0:33) = �0:153
w56 �0:2 = (0:9)(0:495)(0:52) = �0:032
w14 0:2 = (0:9)(�0:022)(1) = 0:180
w15 �0:3 = (0:9)(0:037)(1) = �0:267
w24 0:4 = (0:9)(�0:022)(0) = 0:4
w25 0:1 = (0:9)(0:037)(0) = 0:1
w34 �0:5 = (0:9)(�0:022)(1) = �0:520
w35 0:2 = (0:9)(0:037)(1) = 0:233
�6 0:1 + (0:9)(0:495) = 0:546
�5 0:2 + (0:9)(0:037) = 0:233
�4 �0:4 + (0:9)(�0:022) = �0:420

Table 7.6: Calculations for weight and bias updating.

in extracting the knowledge embedded in trained neural networks and in representing that knowledge symbolically.
Methods include extracting rules from networks and sensitivity analysis.

Various algorithms for the extraction of rules have been proposed. The methods typically impose restrictions
regarding procedures used in training the given neural network, the network topology, and the discretization of input
values.

Fully connected networks are di�cult to articulate. Hence, often, the �rst step towards extracting rules from
neural networks is network pruning. This consists of removing weighted links that do not result in a decrease in
the classi�cation accuracy of the given network.

Once the trained network has been pruned, some approaches will then perform link, unit, or activation value
clustering. In one method, for example, clustering is used to �nd the set of common activation values for each
hidden unit in a given trained two-layer neural network (Figure 7.13). The combinations of these activation values
for each hidden unit are analyzed. Rules are derived relating combinations of activation values with corresponding
output unit values. Similarly, the sets of input values and activation values are studied to derive rules describing
the relationship between the input and hidden unit layers. Finally, the two sets of rules may be combined to form
IF-THEN rules. Other algorithms may derive rules of other forms, including M-of-N rules (where M out of a given
N conditions in the rule antecedent must be true in order for the rule consequent to be applied), decision trees with
M-of-N tests, fuzzy rules, and �nite automata.

Sensitivity analysis is used to assess the impact that a given input variable has on a network output. The
input to the variable is varied while the remaining input variables are �xed at some value. Meanwhile, changes in
the network output are monitored. The knowledge gained from this form of analysis can be represented in rules such
as \IF X decreases 5% THEN Y increases 8%".

7.6 Association-based classi�cation

\Can association rule mining be used for classi�cation?"

Association rule mining is an important and highly active area of data mining research. Chapter 6 of this book
described many algorithms for association rule mining. Recently, data mining techniques have been developed which
apply association rule mining to the problem of classi�cation. In this section, we study such association-based

26 CHAPTER 7. CLASSIFICATION AND PREDICTION

H_1 H_2 H_3

O_1 O_2

I_1 I_2 I_3 I_4 I_5 I_6 I_7

for H_1: (-1,0,1)

for H_2: (0,1)

for H_3: (-1, 0.24, 1)

Identify sets of common activation values for each hidden node, H_i:

 IF (a_2 = 0 AND a_3 = -1) OR

 (a_1 = -1 AND a_2 = 1 AND a_3 = -1) OR

 (a_1 = -1 AND a_2 = 0 AND a_3 = 0.24)

ELSE O_1 = 0, O_2 = 1

 THEN O_1 = 1, O_2 = 0

Derive rules relating common activation values with output nodes, O_j:

 ...

 IF (I_2 = 0 AND I_7 = 0) THEN a_2 = 0

 IF (I_4 = 1 AND I_6 = 1) THEN a_3 = -1

Derive rules relating input nodes, I_i, to output nodes, O_j:

 IF (I_5 = 0) THEN a_3 = -1

 IF (I_2 = 0 AND I_7 = 0 AND I_4 = 1 AND I_6 = 1) THEN class = 1

 IF (I_2 = 0 AND I_7 = 0 AND I_5 = 0) THEN class = 1

Obtain rules relating inputs and output classes:

Figure 7.13: Rules can be extracted from training neural networks.

classi�cation.

One method of association-based classi�cation, called associative classi�cation, consists of two steps. In the
�rst step, association rules are generated using a modi�ed version of the standard association rule mining algorithm
known as Apriori. The second step constructs a classi�er based on the association rules discovered.

Let D be the training data, and Y be the set of all classes in D. The algorithm maps categorical attributes to
consecutive positive integers. Continuous attributes are discretized and mapped accordingly. Each data sample d in
D then is represented by a set of (attribute, integer-value) pairs called items, and a class label y. Let I be the set
of all items in D. A class association rule (CAR) is of the form condset) y, where condset is a set of items
(condset � I) and y 2 Y . Such rules can be represented by ruleitems of the form <condset, y>.

A CAR has con�dence c if c% of the samples in D that contain condset belong to class y. A CAR has support s if
s% of the samples in D contain condset and belong to class y. The support count of a condset (condsupCount) is
the number of samples in D that contain the condset. The rule count of a ruleitem (rulesupCount) is the number
of samples in D that contain the condset and are labeled with class y. Ruleitems that satisfy minimum support are
frequent ruleitems. If a set of ruleitems has the same condset, then the rule with the highest con�dence is selected
as the possible rule (PR) to represent the set. A rule satisfying minimum con�dence is called accurate.

\How does associative classi�cation work?"

The �rst step of the associative classi�cation method �nds the set of all PRs that are both frequent and accurate.
These are the class association rules (CARs). A ruleitem whose condset contains k items is a k-ruleitem. The
algorithm employs an iterative approach, similar to that described for Apriori in Section 5.2.1, where ruleitems
are processed rather than itemsets. The algorithm scans the database, searching for the frequent k-ruleitems, for
k = 1; 2; ::, until all frequent k-ruleitems have been found. One scan is made for each value of k. The k-ruleitems are
used to explore (k+1)-ruleitems. In the �rst scan of the database, the count support of 1-ruleitems is determined,
and the frequent 1-ruleitems are retained. The frequent 1-ruleitems, referred to as the set F1, are used to generate
candidate 2-ruleitems, C2. Knowledge of frequent ruleitem properties is used to prune candidate ruleitems that
cannot be frequent. This knowledge states that all non-empty subsets of a frequent ruleitem must also be frequent.
The database is scanned a second time to compute the support counts of each candidate, so that the frequent 2-
ruleitems (F2) can be determined. This process repeats, where Fk is used to generate Ck+1, until no more frequent
ruleitems are found. The frequent ruleitems that satisfy minimum con�dence form the set of CARs. Pruning may
be applied to this rule set.

7.7. OTHER CLASSIFICATION METHODS 27

The second step of the associative classi�cation method processes the generated CARs in order to construct the
classi�er. Since the total number of rule subsets that would be examined in order to determine the most accurate
set of rules can be huge, a heuristic method is employed. A precedence ordering among rules is de�ned where a
rule ri has greater precedence over a rule rj (i.e., ri � rj) if (1) the con�dence of ri is greater than that of rj, or
(2) the con�dences are the same, but ri has greater support, or (3) the con�dences and supports of ri and rj are
the same, but ri is generated earlier than rj . In general, the algorithm selects a set of high precedence CARs to
cover the samples in D. The algorithm requires slightly more than one pass over D in order to determine the �nal
classi�er. The classi�er maintains the selected rules from high to low precedence order. When classifying a new
sample, the �rst rule satisfying the sample is used to classify it. The classi�er also contains a default rule, having
lowest precedence, which speci�es a default class for any new sample that is not satis�ed by any other rule in the
classi�er.

In general, the above associative classi�cation method was empirically found to be more accurate than C4.5 on
several data sets. Each of the above two steps was shown to have linear scale-up.

Association rule mining based on clustering has also been applied to classi�cation. The ARCS, or Association
Rule Clustering System (Section 6.4.3) mines association rules of the formAquan1^Aquan2) Acat, where Aquan1 and
Aquan2 are tests on quantitative attribute ranges (where the ranges are dynamically determined), and Acat assigns a
class label for a categorical attribute from the given training data. Association rules are plotted on a 2-D grid. The
algorithm scans the grid, searching for rectangular clusters of rules. In this way, adjacent ranges of the quantitative
attributes occurring within a rule cluster may be combined. The clustered association rules generated by ARCS
were applied to classi�cation, and their accuracy was compared to C4.5. In general, ARCS is slightly more accurate
when there are outliers in the data. The accuracy of ARCS is related to the degree of discretization used. In terms
of scalability, ARCS requires a constant amount of memory, regardless of the database size. C4.5 has exponentially
higher execution times than ARCS, requiring the entire database, multiplied by some factor, to �t entirely in main
memory. Hence, association rule mining is an important strategy for generating accurate and scalable classi�ers.

7.7 Other classi�cation methods

In this section, we give a brief description of a number of other classi�cation methods. These methods include
k-nearest neighbor classi�cation, case-based reasoning, genetic algorithms, rough set and fuzzy set approaches. In
general, these methods are less commonly used for classi�cation in commercial data mining systems than the methods
described earlier in this chapter. Nearest-neighbor classi�cation, for example, stores all training samples, which may
present di�culties when learning from very large data sets. Furthermore, many applications of case-based reasoning,
genetic algorithms, and rough sets for classi�cation are still in the prototype phase. These methods, however, are
enjoying increasing popularity, and hence we include them here.

7.7.1 k-nearest neighbor classi�ers

Nearest neighbor classi�ers are based on learning by analogy. The training samples are described by n-dimensional
numeric attributes. Each sample represents a point in an n-dimensional space. In this way, all of the training samples
are stored in an n-dimensional pattern space. When given an unknown sample, a k-nearest neighbor classi�er

searches the pattern space for the k training samples that are closest to the unknown sample. These k training
samples are the k \nearest neighbors" of the unknown sample. \Closeness" is de�ned in terms of Euclidean distance,
where the Euclidean distance between two points, X = (x1; x2; :::; xn) and Y = (y1; y2; :::; yn) is:

d(X;Y) =

vuut
nX
i=1

(xi � yi)2: (7.19)

The unknown sample is assigned the most common class among its k nearest neighbors. When k = 1, the
unknown sample is assigned the class of the training sample that is closest to it in pattern space.

Nearest neighbor classi�ers are instance-based since they store all of the training samples. They can incur
expensive computational costs when the number of potential neighbors (i.e., stored training samples) with which to
compare a given unlabeled sample is great. Therefore, e�cient indexing techniques are required. Unlike decision tree

28 CHAPTER 7. CLASSIFICATION AND PREDICTION

induction and backpropagation, nearest neighbor classi�ers assign equal weight to each attribute. This may cause
confusion when there are many irrelevant attributes in the data.

Nearest neighbor classi�ers can also be used for prediction, i.e., to return a real-valued prediction for a given
unknown sample. In this case, the classi�er returns the average value of the real-valued labels associated with the k
nearest neighbors of the unknown sample.

7.7.2 Case-based reasoning

Case-based reasoning (CBR) classi�ers are instanced-based. Unlike nearest neighbor classi�ers, which store train-
ing samples as points in Euclidean space, the samples or \cases" stored by CBR are complex symbolic descriptions.
Business applications of CBR include problem resolution for customer service help desks, for example, where cases
describe product-related diagnostic problems. CBR has also been applied to areas such as engineering and law, where
cases are either technical designs or legal rulings, respectively.

When given a new case to classify, a case-based reasoner will �rst check if an identical training case exists. If one
is found, then the accompanying solution to that case is returned. If no identical case is found, then the case-based
reasoner will search for training cases having components that are similar to those of the new case. Conceptually,
these training cases may be considered as neighbors of the new case. If cases are represented as graphs, this involves
searching for subgraphs which are similar to subgraphs within the new case. The case-based reasoner tries to combine
the solutions of the neighboring training cases in order to propose a solution for the new case. If incompatibilities
arise with the individual solutions, then backtracking to search for other solutions may be necessary. The case-based
reasoner may employ background knowledge and problem-solving strategies in order to propose a feasible combined
solution.

Challenges in case-based reasoning include �nding a good similarity metric (e.g., for matching subgraphs), devel-
oping e�cient techniques for indexing training cases, and methods for combining solutions.

7.7.3 Genetic algorithms

Genetic algorithms attempt to incorporate ideas of natural evolution. In general, genetic learning starts as follows.
An initial population is created consisting of randomly generated rules. Each rule can be represented by a string
of bits. As a simple example, suppose that samples in a given training set are described by two Boolean attributes,
A1 and A2, and that there are two classes, C1 and C2. The rule \IF A1 and not A2 THEN C2" can be encoded as
the bit string \100", where the two leftmost bits represent attributes A1 and A2, respectively, and the rightmost bit
represents the class. Similarly, the rule \if not A1 and not A2 then C1" can be encoded as \001". If an attribute has
k values where k > 2, then k bits may be used to encode the attribute's values. Classes can be encoded in a similar
fashion.

Based on the notion of survival of the �ttest, a new population is formed to consist of the �ttest rules in the
current population, as well as o�spring of these rules. Typically, the �tness of a rule is assessed by its classi�cation
accuracy on a set of training samples.

O�spring are created by applying genetic operators such as crossover and mutation. In crossover, substrings
from pairs of rules are swapped to form new pairs of rules. In mutation, randomly selected bits in a rule's string
are inverted.

The process of generating new populations based on prior populations of rules continues until a population P

\evolves" where each rule in P satis�es a prespeci�ed �tness threshold.

Genetic algorithms are easily parallelizable and have been used for classi�cation as well as other optimization
problems. In data mining, they may be used to evaluate the �tness of other algorithms.

7.7.4 Rough set theory

Rough set theory can be used for classi�cation to discover structural relationships within imprecise or noisy data. It
applies to discrete-valued attributes. Continuous-valued attributes must therefore be discretized prior to its use.

Rough set theory is based on the establishment of equivalence classes within the given training data. All of
the data samples forming an equivalence class are indiscernible, that is, the samples are identical with respect to
the attributes describing the data. Given real-world data, it is common that some classes cannot be distinguished

7.7. OTHER CLASSIFICATION METHODS 29

upper approximation of C
lower approximation of C

C

Figure 7.14: A rough set approximation of the set of samples of the class C using lower and upper approximation
sets of C. The rectangular regions represent equivalence classes.

in terms of the available attributes. Rough sets can be used to approximately or \roughly" de�ne such classes.
A rough set de�nition for a given class C is approximated by two sets - a lower approximation of C and an
upper approximation of C. The lower approximation of C consists of all of the data samples which, based on the
knowledge of the attributes, are certain to belong to C without ambiguity. The upper approximation of C consists of
all of the samples which, based on the knowledge of the attributes, cannot be described as not belonging to C. The
lower and upper approximations for a class C are shown in Figure 7.14, where each rectangular region represents an
equivalence class. Decision rules can be generated for each class. Typically, a decision table is used to represent the
rules.

Rough sets can also be used for feature reduction (where attributes that do not contribute towards the classi�-
cation of the given training data can be identi�ed and removed), and relevance analysis (where the contribution or
signi�cance of each attribute is assessed with respect to the classi�cation task). The problem of �nding the minimal
subsets (reducts) of attributes that can describe all of the concepts in the given data set is NP-hard. However,
algorithms to reduce the computation intensity have been proposed. In one method, for example, a discernibility
matrix is used which stores the di�erences between attribute values for each pair of data samples. Rather than
searching on the entire training set, the matrix is instead searched to detect redundant attributes.

7.7.5 Fuzzy set approaches

Rule-based systems for classi�cation have the disadvantage that they involve sharp cut-o�s for continuous attributes.
For example, consider Rule (7.20) below for customer credit application approval. The rule essentially says that
applications for customers who have had a job for two or more years, and who have a high income (i.e., of more than
$50K) are approved.

IF (years employed >= 2) ^ (income � 50K) THEN credit = approved: (7.20)

By Rule (7.20), a customer who has had a job for at least 2 years will receive credit if her income is, say, $51K, but
not if it is $50K. Such harsh thresholding may seem unfair. Instead, fuzzy logic can be introduced into the system
to allow \fuzzy" thresholds or boundaries to be de�ned. Rather than having a precise cuto� between categories or
sets, fuzzy logic uses truth values between 0:0 and 1:0 to represent the degree of membership that a certain value has
in a given category. Hence, with fuzzy logic, we can capture the notion that an income of $50K is, to some degree,
high, although not as high as an income of $51K.

Fuzzy logic is useful for data mining systems performing classi�cation. It provides the advantage of working at a
high level of abstraction. In general, the use of fuzzy logic in rule-based systems involves the following:

� Attribute values are converted to fuzzy values. Figure 7.15 shows how values for the continuous attribute
income are mapped into the discrete categories flow, medium, highg, as well as how the fuzzy membership or
truth values are calculated. Fuzzy logic systems typically provide graphical tools to assist users in this step.

� For a given new sample, more than one fuzzy rule may apply. Each applicable rule contributes a vote for
membership in the categories. Typically, the truth values for each predicted category are summed.

30 CHAPTER 7. CLASSIFICATION AND PREDICTION

1.0

fuzzy

membership

0.5

| | | | | | |

-

_

borderline somewhat

low medium high

highlow

income10K 20K 30K 40K 50K 60K 70K

Figure 7.15: Fuzzy values for income.

� The sums obtained above are combined into a value that is returned by the system. This process may be done
by weighting each category by its truth sum and multiplying by the mean truth value of each category. The
calculations involved may be more complex, depending on the complexity of the fuzzy membership graphs.

Fuzzy logic systems have been used in numerous areas for classi�cation, including health care and �nance.

7.8 Prediction

\What if we would like to predict a continuous value, rather than a categorical label?"

The prediction of continuous values can be modeled by statistical techniques of regression. For example, we may
like to develop a model to predict the salary of college graduates with 10 years of work experience, or the potential
sales of a new product given its price. Many problems can be solved by linear regression, and even more can be
tackled by applying transformations to the variables so that a nonlinear problem can be converted to a linear one. For
reasons of space, we cannot give a fully detailed treatment of regression. Instead, this section provides an intuitive
introduction to the topic. By the end of this section, you will be familiar with the ideas of linear, multiple, and
nonlinear regression, as well as generalized linear models.

Several software packages exist to solve regression problems. Examples include SAS (http://www.sas.com), SPSS
(http://www.spss.com), and S-Plus (http://www.mathsoft.com).

7.8.1 Linear and multiple regression

\What is linear regression?"

In linear regression, data are modeled using a straight line. Linear regression is the simplest form of regression.
Bivariate linear regression models a random variable, Y (called a response variable), as a linear function of another
random variable, X (called a predictor variable), i.e.,

Y = �+ �X; (7.21)

where the variance of Y is assumed to be constant, and � and � are regression coe�cients specifying the Y-
intercept and slope of the line, respectively. These coe�cients can be solved for by the method of least squares,
which minimizes the error between the actual line separating the data and the estimate of the line. Given s samples
or data points of the form (x1; y1), (x2; y2), .., (xs; ys), then the regression coe�cients can be estimated using this
method with Equations (7.22) and (7.23),

� =

Ps

i=1(xi � �x)(yi � �y)Ps

i=1 (xi � �x)2
; (7.22)

7.8. PREDICTION 31

� = �y � ��x; (7.23)

where �x is the average of x1; x2; ::; xs, and �y is the average of y1; y2; ::; ys. The coe�cients � and � often provide
good approximations to otherwise complicated regression equations.

X Y

years experience salary (in $1000)

3 30
8 57
9 64
13 72
3 36
6 43
11 59
21 90
1 20
16 83

Table 7.7: Salary data.

0

20

40

60

80

100

0 5 10 15 20 25

S
a

la
ry

 (
in

 $
1

0
0

0
)

Years experience

Figure 7.16: Plot of the data in Table 7.7 for Example 7.6. Although the points do not fall on a straight line, the
overall pattern suggests a linear relationship between X (years experience) and Y (salary).

Example 7.6 Linear regression using the method of least squares. Table 7.7 shows a set of paired data
where X is the number of years of work experience of a college graduate and Y is the corresponding salary of the
graduate. A plot of the data is shown in Figure 7.16, suggesting a linear relationship between the two variables, X
and Y . We model the relationship that salary may be related to the number of years of work experience with the
equation Y = �+ �X.

Given the above data, we compute �x = 9:1 and �y = 55:4. Substituting these values into Equation (7.22), we get

� = (3�9:1)(30�55:4)+(8�9:1)(57�55:4)+:::+(16�9:1)(83�55:4)

(3�9:1)2+(8�9:1)2+:::+(16�9:1)2
= 3:7

� = 55:4� (3:7)(9:1) = 21:7

Thus, the equation of the least squares line is estimated by Y = 21:7 + 3:7X. Using this equation, we can predict
that the salary of a college graduate with, say, 10 years of experience is $58.7K. 2

Multiple regression is an extension of linear regression involving more than one predictor variable. It allows
response variable Y to be modeled as a linear function of a multidimensional feature vector. An example of a multiple
regression model based on two predictor attributes or variables, X1 and X2, is shown in Equation (7.24).

32 CHAPTER 7. CLASSIFICATION AND PREDICTION

Y = �+ �1X1 + �2X2 (7.24)

The method of least squares can also be applied here to solve for �, �1, and �2.

7.8.2 Nonlinear regression

\How can we model data that does not show a linear dependence? For example, what if a given response variable

and predictor variables have a relationship that may be modeled by a polynomial function?"

Polynomial regression can be modeled by adding polynomial terms to the basic linear model. By applying
transformations to the variables, we can convert the nonlinear model into a linear one that can then be solved by
the method of least squares.

Example 7.7 Transformation of a polynomial regression model to a linear regression model. Consider
a cubic polynomial relationship given by Equation (7.25).

Y = �+ �1X + �2X
2 + �3X

3 (7.25)

To convert this equation to linear form, we de�ne new variables as shown in Equation (7.26).

X1 = X X2 = X2 X3 = X3 (7.26)

Equation (7.25) can then be converted to linear form by applying the above assignments, resulting in the equation
Y = �+ �1X1 + �2X2 + �3X3, which is solvable by the method of least squares.

2

In Exercise 7, you are asked to �nd the transformations required to convert a nonlinear model involving a power
function into a linear regression model.

Some models are intractably nonlinear (such as the sum of exponential terms, for example) and cannot be
converted to a linear model. For such cases, it may be possible to obtain least-square estimates through extensive
calculations on more complex formulae.

7.8.3 Other regression models

Linear regression is used to model continuous-valued functions. It is widely used, owing largely to its simplicity.
\Can it also be used to predict categorical labels?" Generalized linear models represent the theoretical foundation
on which linear regression can be applied to the modeling of categorical response variables. In generalized linear
models, the variance of the response variable Y is a function of the mean value of Y , unlike in linear regression,
where the variance of Y is constant. Common types of generalized linear models include logistic regression and
Poisson regression. Logistic regression models the probability of some event occurring as a linear function of a
set of predictor variables. Count data frequently exhibit a Poisson distribution and are commonly modeled using
Poisson regression.

Log-linear models approximate discrete multidimensional probability distributions. They may be used to
estimate the probability value associated with data cube cells. For example, suppose we are given data for the
attributes city, item, year, and sales. In the log-linear method, all attributes must be categorical, hence continuous-
valued attributes (like sales) must �rst be discretized. The method can then be used to estimate the probability of
each cell in the 4-D base cuboid for the given attributes, based on the 2-D cuboids for city and item, city and year,
city and sales, and the 3-D cuboid for item, year, and sales. In this way, an iterative technique can be used to build
higher order data cubes from lower order ones. The technique scales up well to allow for many dimensions. Aside
from prediction, the log-linear model is useful for data compression (since the smaller order cuboids together typically
occupy less space than the base cuboid) and data smoothing (since cell estimates in the smaller order cuboids are
less subject to sampling variations than cell estimates in the base cuboid).

7.9. CLASSIFIER ACCURACY 33

data

training

set

test set

derive

classifier

estimate

accuracy

Figure 7.17: Estimating classi�er accuracy with the holdout method.

7.9 Classi�er accuracy

Estimating classi�er accuracy is important in that it allows one to evaluate how accurately a given classi�er will
correctly label future data, i.e., data on which the classi�er has not been trained. For example, if data from previous
sales are used to train a classi�er to predict customer purchasing behavior, we would like some estimate of how
accurately the classi�er can predict the purchasing behavior of future customers. Accuracy estimates also help in
the comparison of di�erent classi�ers. In Section 7.9.1, we discuss techniques for estimating classi�er accuracy, such
as the holdout and k-fold cross-validation methods. Section 7.9.2 describes bagging and boosting, two strategies for
increasing classi�er accuracy. Section 7.9.3 discusses additional issues relating to classi�er selection.

7.9.1 Estimating classi�er accuracy

Using training data to derive a classi�er and then to estimate the accuracy of the classi�er can result in misleading
over-optimistic estimates due to overspecialization of the learning algorithm (or model) to the data. Holdout and
cross-validation are two common techniques for assessing classi�er accuracy, based on randomly-sampled partitions
of the given data.

In the holdoutmethod, the given data are randomly partitioned into two independent sets, a training set and a
test set. Typically, two thirds of the data are allocated to the training set, and the remaining one third is allocated
to the test set. The training set is used to derive the classi�er, whose accuracy is estimated with the test set
(Figure 7.17). The estimate is pessimistic since only a portion of the initial data is used to derive the classi�er.
Random subsampling is a variation of the holdout method in which the holdout method is repeated k times. The
overall accuracy estimate is taken as the average of the accuracies obtained from each iteration.

In k-fold cross validation, the initial data are randomly partitioned into k mutually exclusive subsets or \folds",
S1; S2; :::; Sk, each of approximately equal size. Training and testing is performed k times. In iteration i, the subset
Si is reserved as the test set, and the remaining subsets are collectively used to train the classi�er. That is, the
classi�er of the �rst iteration is trained on subsets S2; ::; Sk, and tested on S1; the classi�er of the section iteration
is trained on subsets S1; S3; ::; Sk, and tested on S2; and so on. The accuracy estimate is the overall number of
correct classi�cations from the k iterations, divided by the total number of samples in the initial data. In strati�ed
cross-validation, the folds are strati�ed so that the class distribution of the samples in each fold is approximately
the same as that in the initial data.

Other methods of estimating classi�er accuracy include bootstrapping, which samples the given training in-
stances uniformly with replacement, and leave-one-out, which is k-fold cross validation with k set to s, the number
of initial samples. In general, strati�ed 10-fold cross-validation is recommended for estimating classi�er accuracy
(even if computation power allows using more folds) due to its relatively low bias and variance.

The use of such techniques to estimate classi�er accuracy increases the overall computation time, yet is useful for
selecting among several classi�ers.

34 CHAPTER 7. CLASSIFICATION AND PREDICTION

data

C_1

C_2

C_T

combine

votes

new data

sample

class

prediction.

.

Figure 7.18: Increasing classi�er accuracy: Bagging and boosting each generate a set of classi�ers, C1; C2; ::; CT .
Voting strategies are used to combine the class predictions for a given unknown sample.

7.9.2 Increasing classi�er accuracy

In the previous section, we studied methods of estimating classi�er accuracy. In Section 7.3.2, we saw how pruning
can be applied to decision tree induction to help improve the accuracy of the resulting decision trees. Are there
general techniques for improving classi�er accuracy?

The answer is yes. Bagging (or boostrap aggregation) and boosting are two such techniques (Figure 7.18). Each
combines a series of T learned classi�ers, C1; C2; ::; CT , with the aim of creating an improved composite classi�er,
C�.

\How do these methods work?" Suppose that you are a patient and would like to have a diagnosis made based
on your symptoms. Instead of asking one doctor, you may choose to ask several. If a certain diagnosis occurs more
than the others, you may choose this as the �nal or best diagnosis. Now replace each doctor by a classi�er, and you
have the intuition behind bagging. Suppose instead, that you assign weights to the \value" or worth of each doctor's
diagnosis, based on the accuracies of previous diagnoses they have made. The �nal diagnosis is then a combination
of the weighted diagnoses. This is the essence behind boosting. Let us have a closer look at these two techniques.

Given a set S of s samples, bagging works as follows. For iteration t (t = 1; 2; ::; T), a training set St is sampled
with replacement from the original set of samples, S. Since sampling with replacement is used, some of the original
samples of S may not be included in St, while others may occur more than once. A classi�er Ct is learned for each
training set, St. To classify an unknown sample, X, each classi�er Ct returns its class prediction, which counts as
one vote. The bagged classi�er, C�, counts the votes and assigns the class with the most votes to X. Bagging can
be applied to the prediction of continuous values by taking the average value of each vote, rather than the majority.

In boosting, weights are assigned to each training sample. A series of classi�ers is learned. After a classi�er
Ct is learned, the weights are updated to allow the subsequent classi�er, Ct+1, to \pay more attention" to the
misclassi�cation errors made by Ct. The �nal boosted classi�er, C�, combines the votes of each individual classi�er,
where the weight of each classi�er's vote is a function of its accuracy. The boosting algorithm can be extended for
the prediction of continuous values.

7.9.3 Is accuracy enough to judge a classi�er?

In addition to accuracy, classi�ers can be compared with respect to their speed, robustness (e.g., accuracy on noisy
data), scalability, and interpretability. Scalability can be evaluated by assessing the number of I/O operations
involved for a given classi�cation algorithm on data sets of increasingly large size. Interpretability is subjective,
although we may use objective measurements such as the complexity of the resulting classi�er (e.g., number of tree
nodes for decision trees, or number of hidden units for neural networks, etc.) in assessing it.

\Is it always possible to assess accuracy?" In classi�cation problems, it is commonly assumed that all objects
are uniquely classi�able, i.e., that each training sample can belong to only one class. As we have discussed above,
classi�cation algorithms can then be compared according to their accuracy. However, owing to the wide diversity

7.10. SUMMARY 35

of data in large databases, it is not always reasonable to assume that all objects are uniquely classi�able. Rather,
it is more probable to assume that each object may belong to more than one class. How then, can the accuracy
of classi�ers on large databases be measured? The accuracy measure is not appropriate, since it does not take into
account the possibility of samples belonging to more than one class.

Rather than returning a class label, it is useful to return a probability class distribution. Accuracy measures
may then use a second guess heuristic whereby a class prediction is judged as correct if it agrees with the �rst or
second most probable class. Although this does take into consideration, in some degree, the non-unique classi�cation
of objects, it is not a complete solution.

7.10 Summary

� Classi�cation and prediction are two forms of data analysis which can be used to extract models describing im-
portant data classes or to predict future data trends. While classi�cation predicts categorical labels (classes),
predictionmodels continuous-valued functions.

� Preprocessing of the data in preparation for classi�cation and prediction can involve data cleaning to reduce
noise or handle missing values, relevance analysis to remove irrelevant or redundant attributes, and data

transformation, such as generalizing the data to higher level concepts, or normalizing the data.

� Predictive accuracy, computational speed, robustness, scalability, and interpretability are �ve criteria for the
evaluation of classi�cation and prediction methods.

� ID3 and C4.5 are greedy algorithms for the induction of decision trees. Each algorithm uses an information
theoretic measure to select the attribute tested for each non-leaf node in the tree. Pruning algorithms attempt
to improve accuracy by removing tree branches reecting noise in the data. Early decision tree algorithms
typically assume that the data are memory resident - a limitation to data mining on large databases. Since then,
several scalable algorithms have been proposed to address this issue, such as SLIQ, SPRINT, and RainForest.
Decision trees can easily be converted to classi�cation IF-THEN rules.

� Naive Bayesian classi�cation and Bayesian belief networks are based on Bayes theorem of posterior
probability. Unlike naive Bayesian classi�cation (which assumes class conditional independence), Bayesian
belief networks allow class conditional independencies to be de�ned between subsets of variables.

� Backpropagation is a neural network algorithm for classi�cation which employs a method of gradient descent.
It searches for a set of weights which can model the data so as to minimize the mean squared distance between
the network's class prediction and the actual class label of data samples. Rules may be extracted from trained
neural networks in order to help improve the interpretability of the learned network.

� Association mining techniques, which search for frequently occurring patterns in large databases, can be
applied to and used for classi�cation.

� Nearest neighbor classi�ers and cased-based reasoning classi�ers are instance-basedmethods of classi�cation
in that they store all of the training samples in pattern space. Hence, both require e�cient indexing techniques.
In genetic algorithms, populations of rules \evolve" via operations of crossover and mutation until all rules
within a population satisfy a speci�ed threshold. Rough set theory can be used to approximately de�ne
classes that are not distinguishable based on the available attributes. Fuzzy set approaches replace \brittle"
threshold cuto�s for continuous-valued attributes with degree of membership functions.

� Linear, nonlinear, and generalized linear models of regression can be used for prediction. Many nonlinear
problems can be converted to linear problems by performing transformations on the predictor variables.

� Data warehousing techniques, such as attribute-oriented induction and the use of multidimensional data cubes,
can be integrated with classi�cation methods in order to allow fast multilevel mining. Classi�cation tasks
may be speci�ed using a data mining query language, promoting interactive data mining.

� Strati�ed k-fold cross validation is a recommended method for estimating classi�er accuracy. Bagging

and boosting methods can be used to increase overall classi�cation accuracy by learning and combining a
series of individual classi�ers.

36 CHAPTER 7. CLASSIFICATION AND PREDICTION

Exercises

1. Table 7.8 consists of training data from an employee database. The data have been generalized. For a given
row entry, count represents the number of data tuples having the values for department, status, age, and salary

given in that row.

department status age salary count

sales senior 31-35 45-50K 30
sales junior 26-30 25-30K 40
sales junior 31-35 30-35K 40
systems junior 21-25 45-50K 20
systems senior 31-35 65-70K 5
systems junior 26-30 45-50K 3
systems senior 41-45 65-70K 3
marketing senior 36-40 45-50K 10
marketing junior 31-35 40-45K 4
secretary senior 46-50 35-40K 4
secretary junior 26-30 25-30K 6

Table 7.8: Generalized relation from an employee database.

Let salary be the class label attribute.

(a) How would you modify the ID3 algorithm to take into consideration the count of each data tuple (i.e., of
each row entry)?

(b) Use your modi�ed version of ID3 to construct a decision tree from the given data.

(c) Given a data sample with the values \systems", \junior", and \20-24" for the attributes department,

status, and age, respectively, what would a naive Bayesian classi�cation of the salary for the sample be?

(d) Design a multilayer feed-forward neural network for the given data. Label the nodes in the input and
output layers.

(e) Using the multilayer feed-forward neural network obtained above, show the weight values after one iteration
of the backpropagation algorithm given the training instance \(sales, senior, 31-35, 45-50K)". Indicate
your initial weight values and the learning rate used.

2. Write an algorithm for k-nearest neighbor classi�cation given k, and n, the number of attributes describing
each sample.

3. What is a drawback of using a separate set of samples to evaluate pruning?

4. Given a decision tree, you have the option of (a) converting the decision tree to rules and then pruning the
resulting rules, or (b) pruning the decision tree and then converting the pruned tree to rules? What advantage
does (a) have over (b)?

5. ADD QUESTIONS ON OTHER CLASSIFICATION METHODS.

6. Table 7.9 shows the mid-term and �nal exam grades obtained for students in a database course.

(a) Plot the data. Do X and Y seem to have a linear relationship?

(b) Use the method of least squares to �nd an equation for the prediction of a student's �nal exam grade
based on the student's mid-term grade in the course.

(c) Predict the �nal exam grade of a student who received an 86 on the mid-term exam.

7. Some nonlinear regression models can be converted to linear models by applying transformations to the predictor
variables. Show how the nonlinear regression equation Y = �X� can be converted to a linear regression equation
solvable by the method of least squares.

7.10. SUMMARY 37

X Y

mid-term exam �nal exam

72 84
50 63
81 77
74 78
94 90
86 75
59 49
83 79
65 77
33 52
88 74
81 90

Table 7.9: Mid-term and �nal exam grades.

8. It is di�cult to assess classi�cation accuracy when individual data objects may belong to more than one class
at a time. In such cases, comment on what criteria you would use to compare di�erent classi�ers modeled after
the same data.

Bibliographic Notes

Classi�cation from a machine learning perspective is described in several books, such as Weiss and Kulikowski
[136], Michie, Spiegelhalter, and Taylor [88], Langley [67], and Mitchell [91]. Weiss and Kulikowski [136] compare
classi�cation and prediction methods from many di�erent �elds, in addition to describing practical techniques for
the evaluation of classi�er performance. Many of these books describe each of the basic methods of classi�cation
discussed in this chapter. Edited collections containing seminal articles on machine learning can be found in Michalksi,
Carbonell, and Mitchell [85, 86], Kodrato� and Michalski [63], Shavlik and Dietterich [123], and Michalski and Tecuci
[87]. For a presentation of machine learning with respect to data mining applications, see Michalski, Bratko, and
Kubat [84].

The C4.5 algorithm is described in a book by J. R. Quinlan [108]. The book gives an excellent presentation
of many of the issues regarding decision tree induction, as does a comprehensive survey on decision tree induction
by Murthy [94]. Other algorithms for decision tree induction include the predecessor of C4.5, ID3 (Quinlan [104]),
CART (Breiman et al. [11]), FACT (Loh and Vanichsetakul [76]), QUEST (Loh and Shih [75]), and PUBLIC (Rastogi
and Shim [111]). Incremental versions of ID3 include ID4 (Schlimmer and Fisher [120]) and ID5 (Utgo� [132]). In
addition, INFERULE (Uthurusamy, Fayyad, and Spangler [133]) learns decision trees from inconclusive data. KATE
(Manago and Kodrato� [80]) learns decision trees from complex structured data. Decision tree algorithms that
address the scalability issue in data mining include SLIQ (Mehta, Agrawal, and Rissanen [81]), SPRINT (Shafer,
Agrawal, and Mehta [121]), RainForest (Gehrke, Ramakrishnan, and Ganti [43]), and Kamber et al. [61]. Earlier
approaches described include [16, 17, 18]. For a comparison of attribute selection measures for decision tree induction,
see Buntine and Niblett [15], and Murthy [94]. For a detailed discussion on such measures, see Kononenko and Hong
[65].

There are numerous algorithms for decision tree pruning, including cost complexity pruning (Breiman et al. [11]),
reduced error pruning (Quinlan [105]), and pessimistic pruning (Quinlan [104]). PUBLIC (Rastogi and Shim [111])
integrates decision tree construction with tree pruning. MDL-based pruning methods can be found in Quinlan and
Rivest [110], Mehta, Agrawal, and Rissanen [82], and Rastogi and Shim [111]. Others methods include Niblett and
Bratko [96], and Hosking, Pednault, and Sudan [55]. For an empirical comparison of pruning methods, see Mingers
[89], and Malerba, Floriana, and Semeraro [79].

For the extraction of rules from decision trees, see Quinlan [105, 108]. Rather than generating rules by extracting
them from decision trees, it is also possible to induce rules directly from the training data. Rule induction algorithms

38 CHAPTER 7. CLASSIFICATION AND PREDICTION

include CN2 (Clark and Niblett [21]), AQ15 (Hong, Mozetic, and Michalski [54]), ITRULE (Smyth and Goodman
[126]), FOIL (Quinlan [107]), and Swap-1 (Weiss and Indurkhya [134]). Decision trees, however, tend to be superior
in terms of computation time and predictive accuracy. Rule re�nement strategies which identify the most interesting
rules among a given rule set can be found in Major and Mangano [78].

For descriptions of data warehousing and multidimensional data cubes, see Harinarayan, Rajaraman, and Ull-
man [48], and Berson and Smith [8], as well as Chapter 2 of this book. Attribution-oriented induction (AOI) is
presented in Han and Fu [45], and summarized in Chapter 5. The integration of AOI with decision tree induction is
proposed in Kamber et al. [61]. The precision or classi�cation threshold described in Section 7.3.6 is used in Agrawal
et al. [2] and Kamber et al. [61].

Thorough presentations of Bayesian classi�cation can be found in Duda and Hart [32], a classic textbook on
pattern recognition, as well as machine learning textbooks such as Weiss and Kulikowski [136] and Mitchell [91]. For
an analysis of the predictive power of naive Bayesian classi�ers when the class conditional independence assumption is
violated, see Domingos and Pazzani [31]. Experiments with kernel density estimation for continuous-valued attributes,
rather than Gaussian estimation have been reported for naive Bayesian classi�ers in John [59]. Algorithms for
inference on belief networks can be found in Russell and Norvig [118] and Jensen [58]. The method of gradient
descent, described in Section 7.4.4 for learning Bayesian belief networks, is given in Russell et al. [117]. The example
given in Figure 7.8 is adapted from Russell et al. [117]. Alternative strategies for learning belief networks with hidden
variables include the EM algorithm (Lauritzen [68]), and Gibbs sampling (York and Madigan [139]). Solutions for
learning the belief network structure from training data given observable variables are proposed in [22, 14, 50].

The backpropagation algorithm was presented in Rumelhart, Hinton, and Williams [115]. Since then, many
variations have been proposed involving, for example, alternative error functions (Hanson and Burr [47]), dynamic
adjustment of the network topology (Fahlman and Lebiere [35], Le Cun, Denker, and Solla [70]), and dynamic
adjustment of the learning rate and momentum parameters (Jacobs [56]). Other variations are discussed in Chauvin
and Rumelhart [19]. Books on neural networks include [116, 49, 51, 40, 19, 9, 113]. Many books on machine learning,
such as [136, 91], also contain good explanations of the backpropagation algorithm. There are several techniques
for extracting rules from neural networks, such as [119, 42, 131, 40, 7, 77, 25, 69]. The method of rule extraction
described in Section 7.5.4 is based on Lu, Setiono, and Liu [77]. Critiques of techniques for rule extraction from
neural networks can be found in Andrews, Diederich, and Tickle [5], and Craven and Shavlik [26]. An extensive
survey of applications of neural networks in industry, business, and science is provided in Widrow, Rumelhart, and
Lehr [137].

The method of associative classi�cation described in Section 7.6 was proposed in Liu, Hsu, and Ma [74]. ARCS
was proposed in Lent, Swami, and Widom [73], and is also described in Chapter 6.

Nearest neighbor methods are discussed in many statistical texts on classi�cation, such as Duda and Hart [32], and
James [57]. Additional information can be found in Cover and Hart [24] and Fukunaga and Hummels [41]. References
on case-based reasoning (CBR) include the texts [112, 64, 71], as well as [1]. For a survey of business applications
of CBR, see Allen [4]. Examples of other applications include [6, 129, 138]. For texts on genetic algorithms, see
[44, 83, 90]. Rough sets were introduced in Pawlak [97, 99]. Concise summaries of rough set theory in data mining
include [141, 20]. Rough sets have been used for feature reduction and expert system design in many applications,
including [98, 72, 128]. Algorithms to reduce the computation intensity in �nding reducts have been proposed in
[114, 125]. General descriptions of fuzzy logic can be found in [140, 8, 20].

There are many good textbooks which cover the techniques of regression. Example include [57, 30, 60, 28, 52,
95, 3]. The book by Press et al. [101] and accompanying source code contain many statistical procedures, such as
the method of least squares for both linear and multiple regression. Recent nonlinear regression models include
projection pursuit and MARS (Friedman [39]). Log-linear models are also known in the computer science literature
as multiplicative models. For log-linear models from a computer science perspective, see Pearl [100]. Regression trees
(Breiman et al. [11]) are often comparable in performance with other regression methods, particularly when there
exist many higher order dependencies among the predictor variables.

Methods for data cleaning and data transformation are discussed in Pyle [102], Kennedy et al. [62], Weiss
and Indurkhya [134], and Chapter 3 of this book. Issues involved in estimating classi�er accuracy are described
in Weiss and Kulikowski [136]. The use of strati�ed 10-fold cross-validation for estimating classi�er accuracy is
recommended over the holdout, cross-validation, leave-one-out (Stone [127]), and bootstrapping (Efron and Tibshirani
[33]) methods, based on a theoretical and empirical study by Kohavi [66]. Bagging is proposed in Breiman [10]. The
boosting technique of Freund and Schapire [38] has been applied to several di�erent classi�ers, including decision
tree induction (Quinlan [109]), and naive Bayesian classi�cation (Elkan [34]).

7.10. SUMMARY 39

The University of California at Irvine (UCI) maintains a Machine Learning Repository of data sets for the develop-
ment and testing of classi�cation algorithms. For information on this repository, see http://www.ics.uci.edu/~mlearn/
MLRepository.html.

No classi�cation method is superior over all others for all data types and domains. Empirical comparisons on
classi�cation methods include [106, 37, 135, 122, 130, 12, 23, 27, 92, 29].

40 CHAPTER 7. CLASSIFICATION AND PREDICTION

Bibliography

[1] A. Aamodt and E. Plazas. Case-based reasoning: Foundational issues, methodological variations, and system
approaches. AI Comm., 7:39{52, 1994.

[2] R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and A. Swami. An interval classi�er for database mining appli-
cations. In Proc. 18th Int. Conf. Very Large Data Bases, pages 560{573, Vancouver, Canada, August 1992.

[3] A. Agresti. An Introduction to Categorical Data Analysis. John Wiley & Sons, 1996.

[4] B. P. Allen. Case-based reasoning: Business applications. Comm. ACM, 37:40{42, 1994.

[5] R. Andrews, J. Diederich, and A. B. Tickle. A survey and critique of techniques for extracting rules from
trained arti�cial neural networks. Knowledge-Based Systems, 8, 1995.

[6] K. D. Ashley. Modeling Legal Argument: Reasoning with Cases and Hypotheticals. Cambridge, MA: MIT Press,
1990.

[7] S. Avner. Discovery of comprehensible symbolic rules in a neural network. In Intl. Symposium on Intelligence

in Neural and Bilogical Systems, pages 64{67, 1995.

[8] A. Berson and S. J. Smith. Data Warehousing, Data Mining, and OLAP. New York: McGraw-Hill, 1997.

[9] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford, UK: Oxford University Press, 1995.

[10] L. Breiman. Bagging predictors. Machine Learning, 24:123{140, 1996.

[11] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classi�cation and Regression Trees. Wadsworth Interna-
tional Group, 1984.

[12] C. E. Brodley and P. E. Utgo�. Multivariate versus univariate decision trees. In Technical Report 8, Department
of Computer Science, Univ. of Massachusetts, 1992.

[13] W. Buntine. Graphical models for discovering knowledge. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth,
and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, pages 59{82. AAAI/MIT
Press, 1996.

[14] W. L. Buntine. Operations for learning with graphical models. Journal of Arti�cial Intelligence Research,
2:159{225, 1994.

[15] W. L. Buntine and Tim Niblett. A further comparison of splitting rules for decision-tree induction. Machine

Learning, 8:75{85, 1992.

[16] J. Catlett. Megainduction: Machine Learning on Very large Databases. PHD Thesis, University of Sydney,
1991.

[17] P. K. Chan and S. J. Stolfo. Experiments on multistrategy learning by metalearning. In Proc. 2nd. Int. Conf.

Information and Knowledge Management, pages 314{323, 1993.

[18] P. K. Chan and S. J. Stolfo. Metalearning for multistrategy and parallel learning. In Proc. 2nd. Int. Workshop

on Multistrategy Learning, pages 150{165, 1993.

41

42 BIBLIOGRAPHY

[19] Y. Chauvin and D. Rumelhart. Backpropagation: Theory, Architectures, and Applications. Hillsdale, NJ:
Lawrence Erlbaum Assoc., 1995.

[20] K. Cios, W. Pedrycz, and R. Swiniarski. Data Mining Methods for Knowledge Discovery. Boston: Kluwer
Academic Publishers, 1998.

[21] P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3:261{283, 1989.

[22] G. Cooper and E. Herskovits. A bayesian method for the induction of probabilistic networks from data.Machine

Learning, 9:309{347, 1992.

[23] V. Corruble, D. E. Brown, and C. L. Pittard. A comparison of decision classi�ers with backpropagation neural
networks for multimodal classi�cation problems. Patern Recognition, 26:953{961, 1993.

[24] T. Cover and P. Hart. Nearest neighbor pattern classi�cation. IEEE Trans. Information Theory, 13:21{27,
1967.

[25] M. W. Craven and J. W. Shavlik. Extracting tree-structured representations of trained networks. In D. Touret-
zky and M. Mozer M. Hasselmo, editors, Advances in Neural Information Processing Systems. Cambridge, MA:
MIT Press, 1996.

[26] M. W. Craven and J. W. Shavlik. Using neural networks in data mining. Future Generation Computer Systems,
13:211{229, 1997.

[27] S. P. Curram and J. Mingers. Neural networks, decision tree induction and discriminant analysis: An empirical
comparison. J. Operational Research Society, 45:440{450, 1994.

[28] J. L. Devore. Probability and Statistics for Engineering and the Science, 4th ed. Duxbury Press, 1995.

[29] T. G. Dietterich, H. Hild, and G. Bakiri. A comparison of ID3 and backpropagation for english text-to-speech
mapping. Machine Learning, 18:51{80, 1995.

[30] A. J. Dobson. An Introduction to Generalized Linear Models. Chapman and Hall, 1990.

[31] P. Domingos and M. Pazzani. Beyond independence: Conditions for the optimality of the simple bayesian
classi�er. In Proc. 13th Intl. Conf. Machine Learning, pages 105{112, 1996.

[32] R. Duda and P. Hart. Pattern Classi�cation and Scene Analysis. Wiley: New York, 1973.

[33] B. Efron and R. Tibshirani. An Introduction to the Bootstrap. New York: Chapman & Hall, 1993.

[34] C. Elkan. Boosting and naive bayesian learning. In Technical Report CS97-557, Dept. of Computer Science
and Engineering, Univ. Calif. at San Diego, Sept. 1997.

[35] S. Fahlman and C. Lebiere. The cascade-correlation learning algorithm. In Technical Report CMU-CS-90-100,
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, 1990.

[36] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (eds.). Advances in Knowledge Discovery

and Data Mining. AAAI/MIT Press, 1996.

[37] D. H. Fisher and K. B. McKusick. An empirical comparison of ID3 and back-propagation. In Proc. 11th Intl.

Joint Conf. AI, pages 788{793, San Mateo, CA: Morgan Kaufmann, 1989.

[38] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences, 55:119{139, 1997.

[39] J. Friedman. Multivariate adaptive regression. Annalsof Statistics, 19:1{141, 1991.

[40] L. Fu. Neural Networks in Computer Intelligence. McGraw-Hill, 1994.

[41] K. Fukunaga and D. Hummels. Bayes error estimation using parzen and k-nn procedure. In IEEE Trans.

Pattern Analysis and Machine Learning, pages 634{643, 1987.

BIBLIOGRAPHY 43

[42] S. I. Gallant. Neural Network Learning and Expert Systems. Cambridge, MA: MIT Press, 1993.

[43] J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest: A framework for fast decision tree construction of
large datasets. In Proc. 1998 Int. Conf. Very Large Data Bases, pages 416{427, New York, NY, August 1998.

[44] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley: Reading,
MA, 1989.

[45] J. Han and Y. Fu. Exploration of the power of attribute-oriented induction in data mining. In U.M. Fayyad,
G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data

Mining, pages 399{421. AAAI/MIT Press, 1996.

[46] J. Han, Y. Fu, W. Wang, J. Chiang, W. Gong, K. Koperski, D. Li, Y. Lu, A. Rajan, N. Stefanovic, B. Xia,
and O. R. Za��ane. DBMiner: A system for mining knowledge in large relational databases. In Proc. 1996 Int.

Conf. Data Mining and Knowledge Discovery (KDD'96), pages 250{255, Portland, Oregon, August 1996.

[47] S. J. Hanson and D. J. Burr. Minkowski back-propagation: Learning in connectionist models with non-euclidean
error signals. In Neural Information Processing Systems, American Institute of Physics, 1988.

[48] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes e�ciently. In Proc. 1996 ACM-

SIGMOD Int. Conf. Management of Data, pages 205{216, Montreal, Canada, June 1996.

[49] R. Hecht-Nielsen. Neurocomputing. Reading, MA: Addison Wesley, 1990.

[50] D. Heckerman, D. Geiger, and D. Chickering. Learning bayesian networks: The combination of knowledge and
statistical data. Machine Learning, 20:197, 1995.

[51] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural Computation. Addison Wesley:
Reading, MA., 1991.

[52] R. V. Hogg and A. T. Craig. Introduction to Mathematical Statistics, 5th ed. Prentice Hall, 1995.

[53] L. B. Holder. Intermediate decision trees. In Proc. 14th Int. Joint Conf. Arti�cial Intelligence (IJCAI95),
pages 1056{1062, Montreal, Canada, Aug. 1995.

[54] J. Hong, I. Mozetic, and R. S. Michalski. AQ15: Incremental learning of attribute-based descriptions from
examples, the method and user's guide. In Report ISG 85-5, UIUCDCS-F-86-949,, Department of Computer
Science, University of Illinois at Urbana-Champagin, 1986.

[55] J. Hosking, E. Pednault, and M. Sudan. A statistical perspective on data mining. In Future Generation

Computer Systems, pages 117{134, ???, 1997.

[56] R. Jacobs. Increased rates of convergence through learning rate adaptation. Neural Networks, 1:295{307, 1988.

[57] M. James. Classi�cation Algorithms. John Wiley, 1985.

[58] F. V. Jensen. An Introduction to Bayesian Networks. Springer Verlag, 1996.

[59] G. H. John. Enhancements to the Data Mining Process. Ph.D. Thesis, Computer Science Dept., Stanford
Univeristy, 1997.

[60] R. A. Johnson and D. W. Wickern. Applied Multivariate Statistical Analysis, 3rd ed. Prentice Hall, 1992.

[61] M. Kamber, L. Winstone, W. Gong, S. Cheng, and J. Han. Generalization and decision tree induction: E�cient
classi�cation in data mining. In Proc. 1997 Int. Workshop Research Issues on Data Engineering (RIDE'97),
pages 111{120, Birmingham, England, April 1997.

[62] R. L Kennedy, Y. Lee, B. Van Roy, C. D. Reed, and R. P. Lippman. Solving Data Mining Problems Through

Pattern Recognition. Upper Saddle River, NJ: Prentice Hall, 1998.

[63] Y. Kodrato� and R. S. Michalski. Machine Learning, An Arti�cial Intelligence Approach, Vol. 3. Morgan
Kaufmann, 1990.

44 BIBLIOGRAPHY

[64] J. L. Kolodner. Case-Based Reasoning. Morgan Kaufmann, 1993.

[65] I. Kononenko and S. J. Hong. Attribute selection for modeling. In Future Generation Computer Systems, pages
181{195, ???, 1997.

[66] K. Koperski and J. Han. Discovery of spatial association rules in geographic information databases. In Proc.

4th Int. Symp. Large Spatial Databases (SSD'95), pages 47{66, Portland, Maine, Aug. 1995.

[67] P. Langley. Elements of Machine Learning. Morgan Kaufmann, 1996.

[68] S. L. Lauritzen. The EM algorithm for graphical association models with missing data. Computational Statistics
and Data Analysis, 19:191{201, 1995.

[69] S. Lawrence, C. L Giles, and A. C. Tsoi. Symbolic conversion, grammatical inference and rule extraction for
foreign exchange rate prediction. In Y. Abu-Mostafa and A. S. Weigend P. N Refenes, editors, Neural Networks
in the Captial Markets. Singapore: World Scienti�c, 1997.

[70] Y. Le Cun, J. S. Denker, and S. A. Solla. Optimal brain damage. In D. Touretzky, editor, Advances in neural

Information Processing Systems, 2, pages San Mateo, CA: Morgan Kaufmann. Cambridge, MA: MIT Press,
1990.

[71] D. B. Leake. CBR in context: The present and future. In D. B. Leake, editor, Cased-Based Reasoning:

Experience, Lessons, and Future Directions, pages 3{30. Menlo Park, CA: AAAI Press, 1996.

[72] A. Lenarcik and Z. Piasta. Probabilistic rough classi�ers with mixture of discrete and continuous variables.
In T. Y. Lin N. Cercone, editor, Rough Sets and Data Mining: Analysis for Imprecise Data, pages 373{383.
Boston: Kluwer, 1997.

[73] B. Lent, A. Swami, and J. Widom. Clustering association rules. In Proc. 1997 Int. Conf. Data Engineering

(ICDE'97), pages 220{231, Birmingham, England, April 1997.

[74] B. Liu, W. Hsu, and Y. Ma. Integrating classi�cation and association rule mining. In Proc. 1998 Int. Conf.

Knowledge Discovery and Data Mining (KDD'98), pages 80{86, New York, NY, August 1998.

[75] W. Y. Loh and Y.S. Shih. Split selection methods for classi�cation trees. Statistica Sinica, 7:815{840, 1997.

[76] W. Y. Loh and N. Vanichsetakul. Tree-structured classi�caiton via generalized discriminant analysis. Journal
of the American Statistical Association, 83:715{728, 1988.

[77] H. Lu, R. Setiono, and H. Liu. Neurorule: A connectionist approach to data mining. In Proc. 21st Int. Conf.

Very Large Data Bases, pages 478{489, Zurich, Switzerland, Sept. 1995.

[78] J. Major and J. Mangano. Selecting among rules induced from a hurricane database. Journal of Intelligent

Information Systems, 4:39{52, 1995.

[79] D. Malerba, E. Floriana, and G. Semeraro. A further comparison of simpli�cation methods for decision tree
induction. In D.Fisher H. Lenz, editor, Learning from Data: AI and Statistics. Springer-Verlag, 1995.

[80] M. Manago and Y. Kodrato�. Induction of decision trees from complex structured data. In G. Piatetsky-
Shapiro and W. J. Frawley, editors, Knowledge Discovery in Databases, pages 289{306. AAAI/MIT Press,
1991.

[81] M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable classi�er for data mining. In Proc. 1996 Int.

Conf. Extending Database Technology (EDBT'96), Avignon, France, March 1996.

[82] M. Mehta, J. Rissanen, and R. Agrawal. MDL-based decision tree pruning. In Proc. 1st Intl. Conf. Knowledge

Discovery and Data Mining (KDD95), Montreal, Canada, Aug. 1995.

[83] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer Verlag, 1992.

[84] R. S. Michalski, I. Bratko, and M. Kubat. Machine Learning and Data Mining: Methods and Applications.
John Wiley & Sons, 1998.

BIBLIOGRAPHY 45

[85] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell. Machine Learning, An Arti�cial Intelligence Approach,

Vol. 1. Morgan Kaufmann, 1983.

[86] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell. Machine Learning, An Arti�cial Intelligence Approach,

Vol. 2. Morgan Kaufmann, 1986.

[87] R. S. Michalski and G. Tecuci. Machine Learning, A Multistrategy Approach, Vol. 4. Morgan Kaufmann, 1994.

[88] D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine Learning, Neural and Statistical Classi�cation. Ellis
Horwood, 1994.

[89] J. Mingers. An empirical comparison of pruning methods for decision-tree induction. Machine Learning,
4:227{243, 1989.

[90] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.

[91] T. M. Mitchell. Machine Learning. McGraw Hill, 1997.

[92] D. Mitchie, D. J. Spiegelhalter, and C. C. Taylor. Machine Learning, Neural and Statistical Classi�cation. New
York: Ellis Horwood, 1994.

[93] R. Mooney, J. Shavlik, G. Towell, and A. Grove. An experimental comparison of symbolic and connectionist
learning algorithms. In Proc. 11th Int. Joint Conf. on Arti�cial Intelligence (IJCAI'89), pages 775{787, Detroit,
MI, Aug. 1989.

[94] S. K. Murthy. Automatic construction of decision trees from data: A multi-disciplinary survey. Data Mining

and Knowledge Discovery, 2:345{389, 1998.

[95] J. Neter, M. H. Kutner, C. J. Nachtsheim, and L. Wasserman. Applied Linear Statistical Models, 4th ed. Irwin:
Chicago, 1996.

[96] T. Niblett and I. Bratko. Learning decision rules in noisy domains. In M. A. Bramer, editor, Expert Systems
'86: Research and Development in Expert Systems III, pages 25{34. British Computer Society Specialist Group
on Expert Systems, Dec. 1986.

[97] Z. Pawlak. Rough sets. Intl. J. Computer and Information Sciences, 11:341{356, 1982.

[98] Z. Pawlak. On learning - rough set approach. In Lecture Notes 208, pages 197{227, New York: Springer-Verlag,
1986.

[99] Z. Pawlak. Rough Sets, Theoretical Aspects of Reasonign about Data. Boston: Kluwer, 1991.

[100] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Palo Alto, CA: Morgan Kau�man, 1988.

[101] W. H. Press, S. A. Teukolsky, V. T. Vetterling, and B. P. Flannery. Numerical Recipes in C, The Art of

Scienti�c Computing. Cambridge, MA: Cambridge University Press, 1996.

[102] D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999.

[103] J. R. Quinlan. The e�ect of noise on concept learning. In Michalski et al., editor, Machine Learning: An

Arti�cial Intelligence Approach, Vol. 2, pages 149{166. Morgan Kaufmann, 1986.

[104] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81{106, 1986.

[105] J. R. Quinlan. Simplifying decision trees. Internation Journal of Man-Machine Studies, 27:221{234, 1987.

[106] J. R. Quinlan. An empirical comparison of genetic and decision-tree classi�ers. In Proc. 5th Intl. Conf. Machine

Learning, pages 135{141, San Mateo, CA: Morgan Kaufmann, 1988.

[107] J. R. Quinlan. Learning logic de�nitions from relations. Machine Learning, 5:139{166, 1990.

[108] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

46 BIBLIOGRAPHY

[109] J. R. Quinlan. Bagging, boosting, and C4.5. In Proc. 13th Natl. Conf. on Arti�cial Intelligence (AAAI'96),
volume 1, pages 725{730, Portland, OR, Aug. 1996.

[110] J. R. Quinlan and R. L. Rivest. Inferring decision trees using the minimum description length principle.
Information and Computation, 80:227{248, March 1989.

[111] R. Rastogi and K. Shim. Public: A decision tree classifer that integrates building and pruning. In Proc. 1998

Int. Conf. Very Large Data Bases, pages 404{415, New York, NY, August 1998.

[112] C. Riesbeck and R. Schank. Inside Case-Based Reasoning. Hillsdale, NJ: Lawrence Erlbaum, 1989.

[113] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge: Cambridge University Press, 1996.

[114] S. Romanski. Operations on families of sets for exhaustive search, given a monotonic function. In Proc. 3rd

Intl. Conf on Data and Knowledge Bases, C. Beeri et. al. (eds.),, pages 310{322, Jerusalem, Israel, 1988.

[115] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In
D. E. Rumelhart J. L. McClelland, editor, Parallel Distributed Processing. Cambridge, MA: MIT Press, 1986.

[116] D. E. Rumelhart and J. L. McClelland. Parallel Distributed Processing. Cambridge, MA: MIT Press, 1986.

[117] S. Russell, J. Binder, D. Koller, and K. Kanazawa. Local learning in probabilistic networks with hidden
variables. In Proc. 14th Joint Int. Conf. on Arti�cial Intelligence (IJCAI'95), volume 2, pages 1146{1152,
Montreal, Canada, Aug. 1995.

[118] S. Russell and P. Norvig. Arti�cial Intelligence: A Modern Approach. Prentice-Hall, 1995.

[119] K. Saito and R. Nakano. Medical diagnostic expert system based on PDP model. In Proc. IEEE International

Conf. on Neural Networks, volume 1, pages 225{262, San Mateo, CA, 1988.

[120] J. C. Schlimmer and D. Fisher. A case study of incremental concept induction. In Proc. 5th Natl. Conf.

Arti�cial Intelligence, pages 496{501, Phildelphia, PA: Morgan Kaufmann, 1986.

[121] J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel classi�er for data mining. In Proc. 1996

Int. Conf. Very Large Data Bases, pages 544{555, Bombay, India, Sept. 1996.

[122] J. W. Shavlik, R. J. Mooney, and G. G. Towell. Symbolic and neural learning algorithms: An experimental
comparison. Machine Learning, 6:111{144, 1991.

[123] J.W. Shavlik and T.G. Dietterich. Readings in Machine Learning. Morgan Kaufmann, 1990.

[124] A. Skowron, L. Polowski, and J. Komorowski. Learning tolerance relations by boolean descriptors: Automatic
feature extraction from data tables. In Proc. 4th Intl. Workshop on Rough Sets, Fuzzy Sets, and Machine

Discovery, S. Tsumoto et. al. (eds.), pages 11{17, University of Tokyo, 1996.

[125] A. Skowron and C. Rauszer. The discernibility matrices and functions in information systems. In R. Slowinski,
editor, Intelligent Decision Support, Handbook of Applications and Advances of the Rough Set Theory, pages
331{362. Boston: Kluwer, 1992.

[126] P. Smyth and R.M. Goodman. Rule induction using information theory. In G. Piatetsky-Shapiro and W. J.
Frawley, editors, Knowledge Discovery in Databases, pages 159{176. AAAI/MIT Press, 1991.

[127] M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical

Society, 36:111{147, 1974.

[128] R. Swiniarski. Rough sets and principal component analysis and their applications in feature extraction and
seletion, data model building and classi�cation. In S. Pal A. Skowron, editor, Fuzzy Sets, Rough Sets and

Decision Making Processes. New York: Springer-Verlag, 1998.

[129] K. Sycara, R. Guttal, J. Koning, S. Narasimhan, and D. Navinchandra. CADET: A case-based synthesis tool
for engineering design. Int. Journal of Expert Systems, 4:157{188, 1992.

BIBLIOGRAPHY 47

[130] S. B. Thrun et al. The monk's problems: A performance comparison of di�erent learning algorithms. In
Technical Report CMU-CS-91-197, Department of Computer Science, Carnegie Mellon Univ., Pittsburgh, PA,
1991.

[131] G. G. Towell and J. W. Shavlik. Extracting re�ned rules from knowledge-based neural networks. Machine

Learning, 13:71{101, Oct. 1993.

[132] P. E. Utgo�. An incremental ID3. In Proc. Fifth Int. Conf. Machine Learning, pages 107{120, San Mateo,
California, 1988.

[133] R. Uthurusamy, U. M. Fayyad, and S. Spangler. Learning useful rules from inconclusive data. In G. Piatetsky-
Shapiro and W. J. Frawley, editors, Knowledge Discovery in Databases, pages 141{157. AAAI/MIT Press,
1991.

[134] S. M. Weiss and N. Indurkhya. Predictive Data Mining. Morgan Kaufmann, 1998.

[135] S. M. Weiss and I. Kapouleas. An empirical comparison of pattern recognition, neural nets, and machine
learning classi�cation methods. In Proc. 11th Int. Joint Conf. Arti�cial Intelligence, pages 781{787, Detroit,
MI, Aug. 1989.

[136] S. M. Weiss and C. A. Kulikowski. Computer Systems that Learn: Classi�cation and Prediction Methods from

Statistics, Neural Nets, Machine Learning, and Expert Systems. Morgan Kaufman, 1991.

[137] B. Widrow, D. E. Rumelhart, and M. A. Lehr. Neural networks: Applications in industry, business and science.
Comm. ACM, 37:93{105, 1994.

[138] K. D. Wilson. Chemreg: Using case-based reasoning to support health and safety compliance in the chemical
industry. AI Magazine, 19:47{57, 1998.

[139] J. York and D. Madigan. Markov chaine monte carlo methods for hierarchical bayesian expert systems. In
Cheesman and Oldford, pages 445{452, 1994.

[140] L. A. Zadeh. Fuzzy sets. Information and Control, 8:338{353, 1965.

[141] W. Ziarko. The discovery, analysis, and representation of data dependencies in databases. In G. Piatetsky-
Shapiro W. J. Frawley, editor, Knowledge Discovery in Databases, pages 195{209. AAAI Press, 1991.

Bzupages.com

