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Chapter 5

Concept Description: Characterization

and Comparison

cJ. Han and M. Kamber, 1998, DRAFT!! DO NOT COPY!! DO NOT DISTRIBUTE!! September 15, 1999

From a data analysis point of view, data mining can be classi�ed into two categories: descriptive data mining
and predictive data mining. The former describes the data set in a concise and summarative manner and presents
interesting general properties of the data; whereas the latter constructs one or a set of models, by performing certain
analysis on the available set of data, and attempts to predict the behavior of new data sets.

Databases usually store large amounts of data in great detail. However, users often like to view sets of summarized
data in concise, descriptive terms. Such data descriptions may provide an overall picture of a class of data or
distinguish it from a set of comparative classes. Moreover, users like the ease and exibility of having data sets
described at di�erent levels of granularity and from di�erent angles. Such descriptive data mining is called concept
description, and forms an important component of data mining.

In this chapter, you will learn how concept description can be performed e�ciently and e�ectively.

5.1 What is concept description?

A database management system usually provides convenient tools for users to extract various kinds of data stored
in large databases. Such data extraction tools often use database query languages, such as SQL, or report writers.
These tools, for example, may be used to locate a person's telephone number from an on-line telephone directory, or
print a list of records for all of the transactions performed in a given computer store in 1997. The retrieval of data
from databases, and the application of aggregate functions (such as summation, counting, etc.) to the data represent
an important functionality of database systems: that of query processing. Various kinds of query processing
techniques have been developed. However, query processing is not data mining. While query processing retrieves
sets of data from databases and can compute aggregate functions on the retrieved data, data mining analyzes the
data and discovers interesting patterns hidden in the database.

The simplest kind of descriptive data mining is concept description. Concept description is sometimes called
class description when the concept to be described refers to a class of objects. A concept usually refers to a
collection of data such as stereos, frequent buyers, graduate students, and so on. As a data mining task, concept
description is not a simple enumeration of the data. Instead, it generates descriptions for characterization and
comparison of the data. Characterization provides a concise and succinct summarization of the given collection
of data, while concept or class comparison (also known as discrimination) provides descriptions comparing two
or more collections of data. Since concept description involves both characterization and comparison, we will study
techniques for accomplishing each of these tasks.

There are often many ways to describe a collection of data, and di�erent people may like to view the same
concept or class of objects from di�erent angles or abstraction levels. Therefore, the description of a concept or a
class is usually not unique. Some descriptions may be more preferred than others, based on objective interestingness
measures regarding the conciseness or coverage of the description, or on subjective measures which consider the users'
background knowledge or beliefs. Therefore, it is important to be able to generate di�erent concept descriptions
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2 CHAPTER 5. CONCEPT DESCRIPTION: CHARACTERIZATION AND COMPARISON

both e�ciently and conveniently.

Concept description has close ties with data generalization. Given the large amount of data stored in databases,
it is useful to be able to describe concepts in concise and succinct terms at generalized (rather than low) levels
of abstraction. Allowing data sets to be generalized at multiple levels of abstraction facilitates users in examining
the general behavior of the data. Given the AllElectronics database, for example, instead of examining individual
customer transactions, sales managers may prefer to view the data generalized to higher levels, such as summarized
by customer groups according to geographic regions, frequency of purchases per group, and customer income. Such
multiple dimensional, multilevel data generalization is similar to multidimensional data analysis in data warehouses.
In this context, concept description resembles on-line analytical processing (OLAP) in data warehouses, discussed in
Chapter 2.

\What are the di�erences between concept description in large databases and on-line analytical processing?" The
fundamental di�erences between the two include the following.

� Data warehouses and OLAP tools are based on a multidimensional data model which views data in the form of a
data cube, consisting of dimensions (or attributes) and measures (aggregate functions). However, the possible
data types of the dimensions and measures for most commercial versions of these systems are restricted.
Many current OLAP systems con�ne dimensions to nonnumeric data1. Similarly, measures (such as count(),
sum(), average()) in current OLAP systems apply only to numeric data. In contrast, for concept formation,
the database attributes can be of various data types, including numeric, nonnumeric, spatial, text or image.
Furthermore, the aggregation of attributes in a database may include sophisticated data types, such as the
collection of nonnumeric data, the merge of spatial regions, the composition of images, the integration of texts,
and the group of object pointers. Therefore, OLAP, with its restrictions on the possible dimension and measure
types, represents a simpli�ed model for data analysis. Concept description in databases can handle complex
data types of the attributes and their aggregations, as necessary.

� On-line analytical processing in data warehouses is a purely user-controlled process. The selection of dimensions
and the application of OLAP operations, such as drill-down, roll-up, dicing, and slicing, are directed and
controlled by the users. Although the control in most OLAP systems is quite user-friendly, users do require a
good understanding of the role of each dimension. Furthermore, in order to �nd a satisfactory description of
the data, users may need to specify a long sequence of OLAP operations. In contrast, concept description in
data mining strives for a more automated process which helps users determine which dimensions (or attributes)
should be included in the analysis, and the degree to which the given data set should be generalized in order
to produce an interesting summarization of the data.

In this chapter, you will learn methods for concept description, including multilevel generalization, summarization,
characterization and discrimination. Such methods set the foundation for the implementation of two major functional
modules in data mining: multiple-level characterization and discrimination. In addition, you will also examine
techniques for the presentation of concept descriptions in multiple forms, including tables, charts, graphs, and rules.

5.2 Data generalization and summarization-based characterization

Data and objects in databases often contain detailed information at primitive concept levels. For example, the item
relation in a sales database may contain attributes describing low level item information such as item ID, name,
brand, category, supplier, place made, and price. It is useful to be able to summarize a large set of data and present it
at a high conceptual level. For example, summarizing a large set of items relating to Christmas season sales provides
a general description of such data, which can be very helpful for sales and marketing managers. This requires an
important functionality in data mining: data generalization.

Data generalization is a process which abstracts a large set of task-relevant data in a database from a relatively
low conceptual level to higher conceptual levels. Methods for the e�cient and exible generalization of large data
sets can be categorized according to two approaches: (1) the data cube approach, and (2) the attribute-oriented
induction approach.

1Note that in Chapter 3, we showed how concept hierarchies may be automatically generated from numeric data to form numeric
dimensions. This feature, however, is a result of recent research in data mining and is not available in most commercial systems.
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5.2.1 Data cube approach for data generalization

In the data cube approach (or OLAP approach) to data generalization, the data for analysis are stored in a
multidimensional database, or data cube. Data cubes and their use in OLAP for data generalization were described
in detail in Chapter 2. In general, the data cube approach \materializes data cubes" by �rst identifying expensive
computations required for frequently-processed queries. These operations typically involve aggregate functions, such
as count(), sum(), average(), and max(). The computations are performed, and their results are stored in data
cubes. Such computations may be performed for various levels of data abstraction. These materialized views can
then be used for decision support, knowledge discovery, and many other applications.

A set of attributes may form a hierarchy or a lattice structure, de�ning a data cube dimension. For example,
date may consist of the attributes day, week, month, quarter, and year which form a lattice structure, and a data
cube dimension for time. A data cube can store pre-computed aggregate functions for all or some of its dimensions.
The precomputed aggregates correspond to speci�ed group-by's of di�erent sets or subsets of attributes.

Generalization and specialization can be performed on a multidimensional data cube by roll-up or drill-down
operations. A roll-up operation reduces the number of dimensions in a data cube, or generalizes attribute values to
higher level concepts. A drill-down operation does the reverse. Since many aggregate functions need to be computed
repeatedly in data analysis, the storage of precomputed results in a multidimensional data cube may ensure fast
response time and o�er exible views of data from di�erent angles and at di�erent levels of abstraction.

The data cube approach provides an e�cient implementation of data generalization, which in turn forms an
important function in descriptive data mining. However, as we pointed out in Section 5.1, most commercial data
cube implementations con�ne the data types of dimensions to simple, nonnumeric data and of measures to simple,
aggregated numeric values, whereas many applications may require the analysis of more complex data types. More-
over, the data cube approach cannot answer some important questions which concept description can, such as which
dimensions should be used in the description, and at what levels should the generalization process reach. Instead, it
leaves the responsibility of these decisions to the users.

In the next subsection, we introduce an alternative approach to data generalization called attribute-oriented
induction, and examine how it can be applied to concept description. Moreover, we discuss how to integrate the two
approaches, data cube and attribute-oriented induction, for concept description.

5.2.2 Attribute-oriented induction

The attribute-oriented induction approach to data generalization and summarization-based characterization was �rst
proposed in 1989, a few years prior to the introduction of the data cube approach. The data cube approach can
be considered as a data warehouse-based, precomputation-oriented, materialized view approach. It performs o�-line
aggregation before an OLAP or data mining query is submitted for processing. On the other hand, the attribute-
oriented approach, at least in its initial proposal, is a relational database query-oriented, generalization-based, on-line
data analysis technique. However, there is no inherent barrier distinguishing the two approaches based on on-line
aggregation versus o�-line precomputation. Some aggregations in the data cube can be computed on-line, while
o�-line precomputation of multidimensional space can speed up attribute-oriented induction as well. In fact, data
mining systems based on attribute-oriented induction, such as DBMiner, have been optimized to include such o�-line
precomputation.

Let's �rst introduce the attribute-oriented induction approach. We will then perform a detailed analysis of the
approach and its variations and extensions.

The general idea of attribute-oriented induction is to �rst collect the task-relevant data using a relational database
query and then perform generalization based on the examination of the number of distinct values of each attribute
in the relevant set of data. The generalization is performed by either attribute removal or attribute generalization
(also known as concept hierarchy ascension). Aggregation is performed by merging identical, generalized tuples, and
accumulating their respective counts. This reduces the size of the generalized data set. The resulting generalized
relation can be mapped into di�erent forms for presentation to the user, such as charts or rules.

The following series of examples illustrates the process of attribute-oriented induction.

Example 5.1 Specifying a data mining query for characterization with DMQL. Suppose that a user would
like to describe the general characteristics of graduate students in the Big-University database, given the attributes
name, gender, major, birth place, birth date, residence, phone# (telephone number), and gpa (grade point average).
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A data mining query for this characterization can be expressed in the data mining query language DMQL as follows.

use Big University DB
mine characteristics as \Science Students"
in relevance to name, gender, major, birth place, birth date, residence, phone#, gpa
from student
where status in \graduate"

We will see how this example of a typical data mining query can apply attribute-oriented induction for mining
characteristic descriptions. 2

\What is the �rst step of attribute-oriented induction?"

First, data focusing should be performed prior to attribute-oriented induction. This step corresponds to the
speci�cation of the task-relevant data (or, data for analysis) as described in Chapter 4. The data are collected
based on the information provided in the data mining query. Since a data mining query is usually relevant to only
a portion of the database, selecting the relevant set of data not only makes mining more e�cient, but also derives
more meaningful results than mining on the entire database.

Specifying the set of relevant attributes (i.e., attributes for mining, as indicated in DMQL with the in relevance

to clause) may be di�cult for the user. Sometimes a user may select only a few attributes which she feels may
be important, while missing others that would also play a role in the description. For example, suppose that the
dimension birth place is de�ned by the attributes city, province or state, and country. Of these attributes, the
user has only thought to specify city. In order to allow generalization on the birth place dimension, the other
attributes de�ning this dimension should also be included. In other words, having the system automatically include
province or state and country as relevant attributes allows city to be generalized to these higher conceptual levels
during the induction process.

At the other extreme, a user may introduce too many attributes by specifying all of the possible attributes with
the clause \in relevance to �". In this case, all of the attributes in the relation speci�ed by the from clause would be
included in the analysis. Many of these attributes are unlikely to contribute to an interesting description. Section
5.4 describes a method to handle such cases by �ltering out statistically irrelevant or weakly relevant attributes from
the descriptive mining process.

\What does the `where status in \graduate"' clause mean?"

The above where clause implies that a concept hierarchy exists for the attribute status. Such a concept hierarchy
organizes primitive level data values for status, such as \M.Sc.", \M.A.", \M.B.A.", \Ph.D.", \B.Sc.", \B.A.", into
higher conceptual levels, such as \graduate" and \undergraduate". This use of concept hierarchies does not appear
in traditional relational query languages, yet is a common feature in data mining query languages.

Example 5.2 Transforming a data mining query to a relational query. The data mining query presented
in Example 5.1 is transformed into the following relational query for the collection of the task-relevant set of data.

use Big University DB
select name, gender, major, birth place, birth date, residence, phone#, gpa
from student
where status in f\M.Sc.", \M.A.", \M.B.A.", \Ph.D."g

The transformed query is executed against the relational database, Big University DB, and returns the data
shown in Table 5.1. This table is called the (task-relevant) initial working relation. It is the data on which
induction will be performed. Note that each tuple is, in fact, a conjunction of attribute-value pairs. Hence, we can
think of a tuple within a relation as a rule of conjuncts, and of induction on the relation as the generalization of
these rules.

2

\Now that the data are ready for attribute-oriented induction, how is attribute-oriented induction performed?"

The essential operation of attribute-oriented induction is data generalization, which can be performed in one of
two ways on the initial working relation: (1) attribute removal, or (2) attribute generalization.
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name gender major birth place birth date residence phone# gpa

Jim Woodman M CS Vancouver, BC, Canada 8-12-76 3511 Main St., Richmond 687-4598 3.67
Scott Lachance M CS Montreal, Que, Canada 28-7-75 345 1st Ave., Vancouver 253-9106 3.70
Laura Lee F physics Seattle, WA, USA 25-8-70 125 Austin Ave., Burnaby 420-5232 3.83

� � � � � � � � � � � � � � � � � � � � � � � �

Table 5.1: Initial working relation: A collection of task-relevant data.

1. Attribute removal is based on the following rule: If there is a large set of distinct values for an attribute
of the initial working relation, but either (1) there is no generalization operator on the attribute (e.g., there is
no concept hierarchy de�ned for the attribute), or (2) its higher level concepts are expressed in terms of other
attributes, then the attribute should be removed from the working relation.

What is the reasoning behind this rule? An attribute-value pair represents a conjunct in a generalized tuple,
or rule. The removal of a conjunct eliminates a constraint and thus generalizes the rule. If, as in case 1, there
is a large set of distinct values for an attribute but there is no generalization operator for it, the attribute
should be removed because it cannot be generalized, and preserving it would imply keeping a large number
of disjuncts which contradicts the goal of generating concise rules. On the other hand, consider case 2, where
the higher level concepts of the attribute are expressed in terms of other attributes. For example, suppose
that the attribute in question is street , whose higher level concepts are represented by the attributes hcity,
province or state, countryi. The removal of street is equivalent to the application of a generalization operator.
This rule corresponds to the generalization rule known as dropping conditions in the machine learning literature
on learning-from-examples.

2. Attribute generalization is based on the following rule: If there is a large set of distinct values for an
attribute in the initial working relation, and there exists a set of generalization operators on the attribute, then
a generalization operator should be selected and applied to the attribute.

This rule is based on the following reasoning. Use of a generalization operator to generalize an attribute value
within a tuple, or rule, in the working relation will make the rule cover more of the original data tuples,
thus generalizing the concept it represents. This corresponds to the generalization rule known as climbing
generalization trees in learning-from-examples.

Both rules, attribute removal and attribute generalization, claim that if there is a large set of distinct values for
an attribute, further generalization should be applied. This raises the question: how large is \a large set of distinct
values for an attribute" considered to be?

Depending on the attributes or application involved, a user may prefer some attributes to remain at a rather
low abstraction level while others to be generalized to higher levels. The control of how high an attribute should be
generalized is typically quite subjective. The control of this process is called attribute generalization control.
If the attribute is generalized \too high", it may lead to over-generalization, and the resulting rules may not be
very informative. On the other hand, if the attribute is not generalized to a \su�ciently high level", then under-
generalization may result, where the rules obtained may not be informative either. Thus, a balance should be attained
in attribute-oriented generalization.

There are many possible ways to control a generalization process. Two common approaches are described below.

� The �rst technique, called attribute generalization threshold control, either sets one generalization thresh-
old for all of the attributes, or sets one threshold for each attribute. If the number of distinct values in an
attribute is greater than the attribute threshold, further attribute removal or attribute generalization should
be performed. Data mining systems typically have a default attribute threshold value (typically ranging from
2 to 8), and should allow experts and users to modify the threshold values as well. If a user feels that the gen-
eralization reaches too high a level for a particular attribute, she can increase the threshold. This corresponds
to drilling down along the attribute. Also, to further generalize a relation, she can reduce the threshold of a
particular attribute, which corresponds to rolling up along the attribute.

� The second technique, called generalized relation threshold control, sets a threshold for the generalized
relation. If the number of (distinct) tuples in the generalized relation is greater than the threshold, further
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generalization should be performed. Otherwise, no further generalization should be performed. Such a threshold
may also be preset in the data mining system (usually within a range of 10 to 30), or set by an expert or user,
and should be adjustable. For example, if a user feels that the generalized relation is too small, she can
increase the threshold, which implies drilling down. Otherwise, to further generalize a relation, she can reduce
the threshold, which implies rolling up.

These two techniques can be applied in sequence: �rst apply the attribute threshold control technique to generalize
each attribute, and then apply relation threshold control to further reduce the size of the generalized relation.

Notice that no matter which generalization control technique is applied, the user should be allowed to adjust
the generalization thresholds in order to obtain interesting concept descriptions. This adjustment, as we saw above,
is similar to drilling down and rolling up, as discussed under OLAP operations in Chapter 2. However, there is a
methodological distinction between these OLAP operations and attribute-oriented induction. In OLAP, each step of
drilling down or rolling up is directed and controlled by the user; whereas in attribute-oriented induction, most of
the work is performed automatically by the induction process and controlled by generalization thresholds, and only
minor adjustments are made by the user after the automated induction.

In many database-oriented induction processes, users are interested in obtaining quantitative or statistical in-
formation about the data at di�erent levels of abstraction. Thus, it is important to accumulate count and other
aggregate values in the induction process. Conceptually, this is performed as follows. A special measure, or numerical
attribute, that is associated with each database tuple is the aggregate function, count. Its value for each tuple in the
initial working relation is initialized to 1. Through attribute removal and attribute generalization, tuples within the
initial working relation may be generalized, resulting in groups of identical tuples. In this case, all of the identical
tuples forming a group should be merged into one tuple. The count of this new, generalized tuple is set to the total
number of tuples from the initial working relation that are represented by (i.e., were merged into) the new generalized
tuple. For example, suppose that by attribute-oriented induction, 52 data tuples from the initial working relation are
all generalized to the same tuple, T . That is, the generalization of these 52 tuples resulted in 52 identical instances
of tuple T . These 52 identical tuples are merged to form one instance of T , whose count is set to 52. Other popular
aggregate functions include sum and avg. For a given generalized tuple, sum contains the sum of the values of a
given numeric attribute for the initial working relation tuples making up the generalized tuple. Suppose that tuple
T contained sum(units sold) as an aggregate function. The sum value for tuple T would then be set to the total
number of units sold for each of the 52 tuples. The aggregate avg (average) is computed according to the formula,
avg = sum/count.

Example 5.3 Attribute-oriented induction. Here we show how attributed-oriented induction is performed on
the initial working relation of Table 5.1, obtained in Example 5.2. For each attribute of the relation, the generalization
proceeds as follows:

1. name: Since there are a large number of distinct values for name and there is no generalization operation
de�ned on it, this attribute is removed.

2. gender: Since there are only two distinct values for gender, this attribute is retained and no generalization is
performed on it.

3. major: Suppose that a concept hierarchy has been de�ned which allows the attribute major to be generalized
to the values fletters&science, engineering, businessg. Suppose also that the attribute generalization threshold
is set to 5, and that there are over 20 distinct values for major in the initial working relation. By attribute
generalization and attribute generalization control, major is therefore generalized by climbing the given concept
hierarchy.

4. birth place: This attribute has a large number of distinct values, therefore, we would like to generalize it.
Suppose that a concept hierarchy exists for birth place, de�ned as city < province or state < country. Suppose
also that the number of distinct values for country in the initial working relation is greater than the attribute
generalization threshold. In this case, birth place would be removed, since even though a generalization operator
exists for it, the generalization threshold would not be satis�ed. Suppose instead that for our example, the
number of distinct values for country is less than the attribute generalization threshold. In this case, birth place
is generalized to birth country.
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5. birth date: Suppose that a hierarchy exists which can generalize birth date to age, and age to age range, and
that the number of age ranges (or intervals) is small with respect to the attribute generalization threshold.
Generalization of birth date should therefore take place.

6. residence: Suppose that residence is de�ned by the attributes number, street, residence city, residence province -
or state and residence country. The number of distinct values for number and street will likely be very high,
since these concepts are quite low level. The attributes number and street should therefore be removed, so that
residence is then generalized to residence city, which contains fewer distinct values.

7. phone#: As with the attribute name above, this attribute contains too many distinct values and should
therefore be removed in generalization.

8. gpa: Suppose that a concept hierarchy exists for gpa which groups grade point values into numerical intervals
like f3.75-4.0, 3.5-3.75, . . . g, which in turn are grouped into descriptive values, such as fexcellent, very good,
. . .g. The attribute can therefore be generalized.

The generalization process will result in groups of identical tuples. For example, the �rst two tuples of Table 5.1
both generalize to the same identical tuple (namely, the �rst tuple shown in Table 5.2). Such identical tuples are
then merged into one, with their counts accumulated. This process leads to the generalized relation shown in Table
5.2.

gender major birth country age range residence city gpa count

M Science Canada 20-25 Richmond very good 16
F Science Foreign 25-30 Burnaby excellent 22

� � � � � � � � � � � � � � � � � � � � �

Table 5.2: A generalized relation obtained by attribute-oriented induction on the data of Table 4.1.

Based on the vocabulary used in OLAP, we may view count as a measure, and the remaining attributes as
dimensions. Note that aggregate functions, such as sum, may be applied to numerical attributes, like salary and
sales. These attributes are referred to as measure attributes.

The generalized relation can also be presented in other forms, as discussed in the following subsection. 2

5.2.3 Presentation of the derived generalization

\Attribute-oriented induction generates one or a set of generalized descriptions. How can these descriptions be
visualized?" The descriptions can be presented to the user in a number of di�erent ways.

Generalized descriptions resulting from attribute-oriented induction are most commonly displayed in the form of
a generalized relation, such as the generalized relation presented in Table 5.2 of Example 5.3.

Example 5.4 Suppose that attribute-oriented induction was performed on a sales relation of the AllElectronics
database, resulting in the generalized description of Table 5.3 for sales in 1997. The description is shown in the form
of a generalized relation.

location item sales (in million dollars) count (in thousands)

Asia TV 15 300
Europe TV 12 250
North America TV 28 450
Asia computer 120 1000
Europe computer 150 1200
North America computer 200 1800

Table 5.3: A generalized relation for the sales in 1997.

2
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Descriptions can also be visualized in the form of cross-tabulations, or crosstabs. In a two-dimensional
crosstab, each row represents a value from an attribute, and each column represents a value from another attribute.
In an n-dimensional crosstab (for n > 2), the columns may represent the values of more than one attribute, with
subtotals shown for attribute-value groupings. This representation is similar to spreadsheets. It is easy to map
directly from a data cube structure to a crosstab.

Example 5.5 The generalized relation shown in Table 5.3 can be transformed into the 3-dimensional cross-tabulation
shown in Table 5.4.

location n item TV computer both items

sales count sales count sales count

Asia 15 300 120 1000 135 1300

Europe 12 250 150 1200 162 1450
North America 28 450 200 1800 228 2250

all regions 45 1000 470 4000 525 5000

Table 5.4: A crosstab for the sales in 1997.

2

Generalized data may be presented in graph forms, such as bar charts, pie charts, and curves. Visualization with
graphs is popular in data analysis. Such graphs and curves can represent 2-D or 3-D data.

Example 5.6 The sales data of the crosstab shown in Table 5.4 can be transformed into the bar chart representation
of Figure 5.1, and the pie chart representation of Figure 5.2. 2

Figure 5.1: Bar chart representation of the sales in 1997.

Figure 5.2: Pie chart representation of the sales in 1997.

Finally, a three-dimensional generalized relation or crosstab can be represented by a 3-D data cube. Such a 3-D
cube view is an attractive tool for cube browsing.
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Figure 5.3: A 3-D Cube view representation of the sales in 1997.

Example 5.7 Consider the data cube shown in Figure 5.3 for the dimensions item, location, and cost. The size of a
cell (displayed as a tiny cube) represents the count of the corresponding cell, while the brightness of the cell can be
used to represent another measure of the cell, such as sum(sales). Pivoting, drilling, and slicing-and-dicing operations
can be performed on the data cube browser with mouse clicking. 2

A generalized relation may also be represented in the form of logic rules. Typically, each generalized tuple
represents a rule disjunct. Since data in a large database usually span a diverse range of distributions, a single
generalized tuple is unlikely to cover, or represent, 100% of the initial working relation tuples, or cases. Thus
quantitative information, such as the percentage of data tuples which satis�es the left-hand side of the rule that
also satis�es the right-hand side the rule, should be associated with each rule. A logic rule that is associated with
quantitative information is called a quantitative rule.

To de�ne a quantitative characteristic rule, we introduce the t-weight as an interestingness measure which
describes the typicality of each disjunct in the rule, or of each tuple in the corresponding generalized relation. The
measure is de�ned as follows. Let the class of objects that is to be characterized (or described by the rule) be called
the target class. Let qa be a generalized tuple describing the target class. The t-weight for qa is the percentage of
tuples of the target class from the initial working relation that are covered by qa. Formally, we have

t weight = count(qa)=�
N
i=1count(qi); (5.1)

where N is the number of tuples for the target class in the generalized relation, q1, . . . , qN are tuples for the target
class in the generalized relation, and qa is in q1, . . . , qN . Obviously, the range for the t-weight is [0, 1] (or [0%,
100%]).

A quantitative characteristic rule can then be represented either (i) in logic form by associating the corre-
sponding t-weight value with each disjunct covering the target class, or (ii) in the relational table or crosstab form
by changing the count values in these tables for tuples of the target class to the corresponding t-weight values.

Each disjunct of a quantitative characteristic rule represents a condition. In general, the disjunction of these
conditions forms a necessary condition of the target class, since the condition is derived based on all of the cases
of the target class, that is, all tuples of the target class must satisfy this condition. However, the rule may not be
a su�cient condition of the target class, since a tuple satisfying the same condition could belong to another class.
Therefore, the rule should be expressed in the form

8X; target class(X) ) condition1(X)[t : w1] _ � � � _ conditionn(X)[t : wn]: (5.2)

The rule indicates that if X is in the target class, there is a possibility of wi that X satis�es conditioni, where wi

is the t-weight value for condition or disjunct i, and i is in f1; : : : ; ng,
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Example 5.8 The crosstab shown in Table 5.4 can be transformed into logic rule form. Let the target class be the
set of computer items. The corresponding characteristic rule, in logic form, is

8X; item(X) = \computer" )

(location(X) = \Asia") [t : 25:00%]_ (location(X) = \Europe") [t : 30:00%]_

(location(X) = \North America") [t : 45:00%] (5.3)

Notice that the �rst t-weight value of 25.00% is obtained by 1000, the value corresponding to the count slot for
(computer; Asia), divided by 4000, the value corresponding to the count slot for (computer; all regions). (That is,
4000 represents the total number of computer items sold). The t-weights of the other two disjuncts were similarly
derived. Quantitative characteristic rules for other target classes can be computed in a similar fashion. 2

5.3 E�cient implementation of attribute-oriented induction

5.3.1 Basic attribute-oriented induction algorithm

Based on the above discussion, we summarize the attribute-oriented induction technique with the following algorithm
which mines generalized characteristic rules in a relational database based on a user's data mining request.

Algorithm 5.3.1 (Basic attribute-oriented induction for mining data characteristics) Mining generalized
characteristics in a relational database based on a user's data mining request.

Input. (i) A relational database DB, (ii) a data mining query, DMQuery, (iii) Gen(ai), a set of concept hierarchies
or generalization operators on attributes ai, and (iv) Ti, a set of attribute generalization thresholds for attributes ai,
and T , a relation generalization threshold.

Output. A characteristic description based on DMQuery.

Method.

1. InitRel: Derivation of the initial working relation, W 0. This is performed by deriving a relational database
query based on the data mining query, DMQuery. The relational query is executed against the database, DB,
and the query result forms the set of task-relevant data, W 0.

2. PreGen: Preparation of the generalization process. This is performed by (1) scanning the initial working
relation W 0 once and collecting the distinct values for each attribute ai and the number of occurrences of
each distinct value in W 0, (2) computing the minimum desired level Li for each attribute ai based on its
given or default attribute threshold Ti, as explained further in the following paragraph, and (3) determining
the mapping-pairs (v; v0) for each attribute ai in W 0, where v is a distinct value of ai in W 0, and v0 is its
corresponding generalized value at level Li.

Notice that the minimum desirable level Li of ai is determined based on a sequence of Gen operators and/or
the available concept hierarchy so that all of the distinct values for attribute ai in W 0 can be generalized to a
small number � of distinct generalized concepts, where � is the largest possible number of distinct generalized
values of ai inW 0 at a level of concept hierarchy which is no greater than the attribute threshold of ai. Notice
that a concept hierarchy, if given, can be adjusted or re�ned dynamically, or, if not given, may be generated
dynamically based on data distribution statistics, as discussed in Chapter 3.

3. PrimeGen: Derivation of the prime generalized relation, R p. This is done by (1) replacing each value
v in ai of W 0 with its corresponding ancestor concept v0 determined at the PreGen stage; and (2) merging
identical tuples in the working relation. This involves accumulating the count information and computing any
other aggregate values for the resulting tuples. The resulting relation is R p.

This step can be e�ciently implemented in two variations: (1) For each generalized tuple, insert the tuple into
a sorted prime relation R p by a binary search: if the tuple is already in R p, simply increase its count and
other aggregate values accordingly; otherwise, insert it into R p. (2) Since in most cases the number of distinct
values at the prime relation level is small, the prime relation can be coded as an m-dimensional array where
m is the number of attributes in R p, and each dimension contains the corresponding generalized attribute
values. Each array element holds the corresponding count and other aggregation values, if any. The insertion
of a generalized tuple is performed by measure aggregation in the corresponding array element.
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4. Presentation: Presentation of the derived generalization.

� Determine whether the generalization is to be presented at the abstraction level of the prime relation, or
if further enforcement of the relation generalization threshold is desired. In the latter case, further gener-
alization is performed on R p by selecting attributes for further generalization. (This can be performed by
either interactive drilling or presetting some preference standard for such a selection). This generalization
process continues until the number of distinct generalized tuples is no greater than T . This derives the
�nal generalized relation R f .

� Multiple forms can be selected for visualization of the output relation. These include a (1) generalized
relation, (2) crosstab, (3) bar chart, pie chart, or curve, and (4) quantitative characteristic rule. 2

\How e�cient is this algorithm?"

Let's examine its computational complexity. Step 1 of the algorithm is essentially a relational query whose
processing e�ciency depends on the query processing methods used. With the successful implementation and com-
mercialization of numerous database systems, this step is expected to have good performance.

For Steps 2 & 3, the collection of the statistics of the initial working relation W 0 scans the relation only once.
The cost for computing the minimum desired level and determining the mapping pairs (v; v0) for each attribute is
dependent on the number of distinct values for each attribute and is smaller than n, the number of tuples in the
initial relation. The derivation of the prime relation R p is performed by inserting generalized tuples into the prime
relation. There are a total of n tuples in W 0 and p tuples in R p. For each tuple t in W 0, substitute its attribute
values based on the derived mapping-pairs. This results in a generalized tuple t0. If variation (1) is adopted, each
t0 takes O(log p) to �nd the location for count incrementation or tuple insertion. Thus the total time complexity is
O(n� log p) for all of the generalized tuples. If variation (2) is adopted, each t0 takes O(1) to �nd the tuple for count
incrementation. Thus the overall time complexity is O(n) for all of the generalized tuples. (Note that the total array
size could be quite large if the array is sparse). Therefore, the worst case time complexity should be O(n � log p) if
the prime relation is structured as a sorted relation, or O(n) if the prime relation is structured as a m-dimensional
array, and the array size is reasonably small.

Finally, since Step 4 for visualization works on a much smaller generalized relation, Algorithm 5.3.1 is e�cient
based on this complexity analysis.

5.3.2 Data cube implementation of attribute-oriented induction

Section 5.3.1 presented a database implementation of attribute-oriented induction based on a descriptive data mining
query. This implementation, though e�cient, has some limitations.

First, the power of drill-down analysis is limited. Algorithm 5.3.1 generalizes its task-relevant data from the
database primitive concept level to the prime relation level in a single step. This is e�cient. However, it facilitates
only the roll up operation from the prime relation level, and the drill down operation from some higher abstraction
level to the prime relation level. It cannot drill from the prime relation level down to any lower level because the
system saves only the prime relation and the initial task-relevant data relation, but nothing in between. Further
drilling-down from the prime relation level has to be performed by proper generalization from the initial task-relevant
data relation.

Second, the generalization in Algorithm 5.3.1 is initiated by a data mining query. That is, no precomputation is
performed before a query is submitted. The performance of such query-triggered processing is acceptable for a query
whose relevant set of data is not very large, e.g., in the order of a few mega-bytes. If the relevant set of data is large,
as in the order of many giga-bytes, the on-line computation could be costly and time-consuming. In such cases, it is
recommended to perform precomputation using data cube or relational OLAP structures, as described in Chapter 2.

Moreover, many data analysis tasks need to examine a good number of dimensions or attributes. For example,
an interactive data mining system may dynamically introduce and test additional attributes rather than just those
speci�ed in the mining query. Advanced descriptive data mining tasks, such as analytical characterization (to be
discussed in Section 5.4), require attribute relevance analysis for a large set of attributes. Furthermore, a user with
little knowledge of the truly relevant set of data may simply specify \in relevance to �" in the mining query. In
these cases, the precomputation of aggregation values will speed up the analysis of a large number of dimensions or
attributes.

The data cube implementation of attribute-oriented induction can be performed in two ways.
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� Construct a data cube on-the-y for the given data mining query: The �rst method constructs a data
cube dynamically based on the task-relevant set of data. This is desirable if either the task-relevant data set is
too speci�c to match any prede�ned data cube, or it is not very large. Since such a data cube is computed only
after the query is submitted, the major motivation for constructing such a data cube is to facilitate e�cient
drill-down analysis. With such a data cube, drilling-down below the level of the prime relation will simply
require retrieving data from the cube, or performing minor generalization from some intermediate level data
stored in the cube instead of generalization from the primitive level data. This will speed up the drill-down
process. However, since the attribute-oriented data generalization involves the computation of a query-related
data cube, it may involve more processing than simple computation of the prime relation and thus increase the
response time. A balance between the two may be struck by computing a cube-structured \subprime" relation
in which each dimension of the generalized relation is a few levels deeper than the level of the prime relation.
This will facilitate drilling-down to these levels with a reasonable storage and processing cost, although further
drilling-down beyond these levels will still require generalization from the primitive level data. Notice that such
further drilling-down is more likely to be localized, rather than spread out over the full spectrum of the cube.

� Use a prede�ned data cube: The second alternative is to construct a data cube before a data mining
query is posed to the system, and use this prede�ned cube for subsequent data mining. This is desirable
if the granularity of the task-relevant data can match that of the prede�ned data cube and the set of task-
relevant data is quite large. Since such a data cube is precomputed, it facilitates attribute relevance analysis,
attribute-oriented induction, dicing and slicing, roll-up, and drill-down. The cost one must pay is the cost of
cube computation and the nontrivial storage overhead. A balance between the computation/storage overheads
and the accessing speed may be attained by precomputing a selected set of all of the possible materializable
cuboids, as explored in Chapter 2.

5.4 Analytical characterization: Analysis of attribute relevance

5.4.1 Why perform attribute relevance analysis?

The �rst limitation of class characterization for multidimensional data analysis in data warehouses and OLAP tools
is the handling of complex objects. This was discussed in Section 5.2. The second limitation is the lack of an
automated generalization process: the user must explicitly tell the system which dimensions should be included in
the class characterization and to how high a level each dimension should be generalized. Actually, each step of
generalization or specialization on any dimension must be speci�ed by the user.

Usually, it is not di�cult for a user to instruct a data mining system regarding how high a level each dimension
should be generalized. For example, users can set attribute generalization thresholds for this, or specify which level
a given dimension should reach, such as with the command \generalize dimension location to the country level". Even
without explicit user instruction, a default value such as 2 to 8 can be set by the data mining system, which would
allow each dimension to be generalized to a level that contains only 2 to 8 distinct values. If the user is not satis�ed
with the current level of generalization, she can specify dimensions on which drill-down or roll-up operations should
be applied.

However, it is nontrivial for users to determine which dimensions should be included in the analysis of class
characteristics. Data relations often contain 50 to 100 attributes, and a user may have little knowledge regarding
which attributes or dimensions should be selected for e�ective data mining. A user may include too few attributes
in the analysis, causing the resulting mined descriptions to be incomplete or incomprehensive. On the other hand,
a user may introduce too many attributes for analysis (e.g., by indicating \in relevance to �", which includes all the
attributes in the speci�ed relations).

Methods should be introduced to perform attribute (or dimension) relevance analysis in order to �lter out statisti-
cally irrelevant or weakly relevant attributes, and retain or even rank the most relevant attributes for the descriptive
mining task at hand. Class characterization which includes the analysis of attribute/dimension relevance is called
analytical characterization. Class comparison which includes such analysis is called analytical comparison.

Intuitively, an attribute or dimension is considered highly relevant with respect to a given class if it is likely that
the values of the attribute or dimension may be used to distinguish the class from others. For example, it is unlikely
that the color of an automobile can be used to distinguish expensive from cheap cars, but the model, make, style, and
number of cylinders are likely to be more relevant attributes. Moreover, even within the same dimension, di�erent
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levels of concepts may have dramatically di�erent powers for distinguishing a class from others. For example, in
the birth date dimension, birth day and birth month are unlikely relevant to the salary of employees. However, the
birth decade (i.e., age interval) may be highly relevant to the salary of employees. This implies that the analysis
of dimension relevance should be performed at multilevels of abstraction, and only the most relevant levels of a
dimension should be included in the analysis.

Above we said that attribute/dimension relevance is evaluated based on the ability of the attribute/dimension
to distinguish objects of a class from others. When mining a class comparison (or discrimination), the target class
and the contrasting classes are explicitly given in the mining query. The relevance analysis should be performed by
comparison of these classes, as we shall see below. However, when mining class characteristics, there is only one class
to be characterized. That is, no contrasting class is speci�ed. It is therefore not obvious what the contrasting class
to be used in the relevance analysis should be. In this case, typically, the contrasting class is taken to be the set of
comparable data in the database which excludes the set of the data to be characterized. For example, to characterize
graduate students, the contrasting class is composed of the set of students who are registered but are not graduate
students.

5.4.2 Methods of attribute relevance analysis

There have been many studies in machine learning, statistics, fuzzy and rough set theories, etc. on attribute relevance
analysis. The general idea behind attribute relevance analysis is to compute some measure which is used to quantify
the relevance of an attribute with respect to a given class. Such measures include the information gain, Gini index,
uncertainty, and correlation coe�cients.

Here we introduce a method which integrates an information gain analysis technique (such as that presented in the
ID3 and C4.5 algorithms for learning decision trees2) with a dimension-based data analysis method. The resulting
method removes the less informative attributes, collecting the more informative ones for use in class description
analysis.

We �rst examine the information-theoretic approach applied to the analysis of attribute relevance. Let's
take ID3 as an example. ID3 constructs a decision tree based on a given set of data tuples, or training objects,
where the class label of each tuple is known. The decision tree can then be used to classify objects for which the
class label is not known. To build the tree, ID3 uses a measure known as information gain to rank each attribute.
The attribute with the highest information gain is considered the most discriminating attribute of the given set. A
tree node is constructed to represent a test on the attribute. Branches are grown from the test node according to
each of the possible values of the attribute, and the given training objects are partitioned accordingly. In general, a
node containing objects which all belong to the same class becomes a leaf node and is labeled with the class. The
procedure is repeated recursively on each non-leaf partition of objects, until no more leaves can be created. This
attribute selection process minimizes the expected number of tests to classify an object. When performing descriptive
mining, we can use the information gain measure to perform relevance analysis, as we shall show below.

\How does the information gain calculation work?" Let S be a set of training objects where the class label of
each object is known. (Each object is in fact a tuple. One attribute is used to determine the class of the objects).
Suppose that there are m classes. Let S contain si objects of class Ci, for i = 1; : : : ;m. An arbitrary object belongs
to class Ci with probability si/s, where s is the total number of objects in set S. When a decision tree is used to
classify an object, it returns a class. A decision tree can thus be regarded as a source of messages for Ci's with the
expected information needed to generate this message given by

I(s1; s2; : : : ; sm) = �

mX

i=1

si

s
log2

si

s
: (5.4)

If an attribute A with values fa1; a2; � � � ; avg is used as the test at the root of the decision tree, it will partition S

into the subsets fS1; S2; � � � ; Svg, where Sj contains those objects in S that have value aj of A. Let Sj contain sij
objects of class Ci. The expected information based on this partitioning by A is known as the entropy of A. It is the

2A decision tree is a ow-chart-like tree structure, where each node denotes a test on an attribute, each branch represents an outcome
of the test, and tree leaves represent classes or class distributions. Decision trees are useful for classi�cation, and can easily be converted
to logic rules. Decision tree induction is described in Chapter 7.
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weighted average:

E(A) =

vX

j=1

s1j + � � �+ smj

s
I(s1j ; : : : ; smj): (5.5)

The information gained by branching on A is de�ned by:

Gain(A) = I(s1; s2; : : : ; sm)� E(A): (5.6)

ID3 computes the information gain for each of the attributes de�ning the objects in S. The attribute which maximizes
Gain(A) is selected, a tree root node to test this attribute is created, and the objects in S are distributed accordingly
into the subsets S1; S2; � � � ; Sm. ID3 uses this process recursively on each subset in order to form a decision tree.

Notice that class characterization is di�erent from the decision tree-based classi�cation analysis. The former
identi�es a set of informative attributes for class characterization, summarization and comparison, whereas the latter
constructs a model in the form of a decision tree for classi�cation of unknown data (i.e., data whose class label is
not known) in the future. Therefore, for the purpose of class description, only the attribute relevance analysis step
of the decision tree construction process is performed. That is, rather than constructing a decision tree, we will use
the information gain measure to rank and select the attributes to be used in class description.

Attribute relevance analysis for class description is performed as follows.

1. Collect data for both the target class and the contrasting class by query processing.

Notice that for class comparison, both the target class and the contrasting class are provided by the user in
the data mining query. For class characterization, the target class is the class to be characterized, whereas the
contrasting class is the set of comparable data which are not in the target class.

2. Identify a set of dimensions and attributes on which the relevance analysis is to be performed.

Since di�erent levels of a dimension may have dramatically di�erent relevance with respect to a given class, each
attribute de�ning the conceptual levels of the dimension should be included in the relevance analysis in prin-
ciple. However, although attributes having a very large number of distinct values (such as name and phone#)
may return nontrivial relevance measure values, they are unlikely to be meaningful for concept description.
Thus, such attributes should �rst be removed or generalized before attribute relevance analysis is performed.
Therefore, only the dimensions and attributes remaining after attribute removal and attribute generalization
should be included in the relevance analysis. The thresholds used for attributes in this step are called the at-
tribute analytical thresholds. To be conservative in this step, note that the attribute analytical threshold
should be set reasonably large so as to allow more attributes to be considered in the relevance analysis. The
relation obtained by such an attribute removal and attribute generalization process is called the candidate
relation of the mining task.

3. Perform relevance analysis for each attribute in the candidation relation.

The relevance measure used in this step may be built into the data mining system, or provided by the user
(depending on whether the system is exible enough to allow users to de�ne their own relevance measurements).
For example, the information gain measure described above may be used. The attributes are then sorted (i.e.,
ranked) according to their computed relevance to the data mining task.

4. Remove from the candidate relation the attributes which are not relevant or are weakly relevant to the class
description task.

A threshold may be set to de�ne \weakly relevant". This step results in an initial target class working

relation and an initial contrasting class working relation.

If the class description task is class characterization, only the initial target class working relation will be included
in further analysis. If the class description task is class comparison, both the initial target class working relation
and the initial contrasting class working relation will be included in further analysis.

The above discussion is summarized in the following algorithm for analytical characterization in relational
databases.
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Algorithm 5.4.1 (Analytical characterization) Mining class characteristic descriptions by performing both at-
tribute relevance analysis and class characterization.

Input. 1. A mining task for characterization of a speci�ed set of data from a relational database,

2. Gen(ai), a set of concept hierarchies or generalization operators on attributes ai,

3. Ui, a set of attribute analytical thresholds for attributes ai,

4. Ti, a set of attribute generalization thresholds for attributes ai, and

5. R, an attribute relevance threshold .

Output. Class characterization presented in user-speci�ed visualization formats.

Method. 1. Data collection: Collect data for both the target class and the contrasting class by query processing,
where the target class is the class to be characterized, and the contrasting class is the set of comparable
data which are in the database but are not in the target class.

2. Analytical generalization: Perform attribute removal and attribute generalization based on the set
of provided attribute analytical thresholds, Ui. That is, if the attribute contains many distinct values,
it should be either removed or generalized to satisfy the thresholds. This process identi�es the set of
attributes on which the relevance analysis is to be performed. The resulting relation is the candidate
relation.

3. Relevance analysis: Perform relevance analysis for each attribute of the candidate relation using the
speci�ed relevance measurement. The attributes are ranked according to their computed relevance to the
data mining task.

4. Initial working relation derivation: Remove from the candidate relation the attributes which are not
relevant or are weakly relevant to the class description task, based on the attribute relevance threshold, R.
Then remove the contrasting class. The result is called the initial (target class) working relation.

5. Induction on the initial working relation: Perform attribute-oriented induction according to Algo-
rithm 5.3.1, using the attribute generalization thresholds, Ti. 2

Since the algorithm is derived following the reasoning provided before the algorithm, its correctness can be
proved accordingly. The complexity of the algorithm is similar to the attribute-oriented induction algorithm since
the induction process is performed twice in both analytical generalization (Step 2) and induction on the initial
working relation (Step 5). Relevance analysis (Step 3) is performed by scanning through the database once to derive
the probability distribution for each attribute.

5.4.3 Analytical characterization: An example

If the mined class descriptions involve many attributes, analytical characterization should be performed. This
procedure �rst removes irrelevant or weakly relevant attributes prior to performing generalization. Let's examine an
example of such an analytical mining process.

Example 5.9 Suppose that we would like to mine the general characteristics describing graduate students at Big-
University using analytical characterization. Given are the attributes name, gender, major, birth place, birth date,
phone#, and gpa.

\How is the analytical characterization performed?"

1. In Step 1, the target class data are collected, consisting of the set of graduate students. Data for a contrasting
class are also required in order to perform relevance analysis. This is taken to be the set of undergraduate
students.

2. In Step 2, analytical generalization is performed in the form of attribute removal and attribute generalization.
Similar to Example 5.3, the attributes name and phone# are removed because their number of distinct values
exceeds their respective attribute analytical thresholds. Also as in Example 5.3, concept hierarchies are used
to generalize birth place to birth country, and birth date to age range. The attributes major and gpa are also
generalized to higher abstraction levels using the concept hierarchies described in Example 5.3. Hence, the
attributes remaining for the candidate relation are gender, major, birth country, age range, and gpa. The
resulting relation is shown in Table 5.5.
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gender major birth country age range gpa count

M Science Canada 20-25 very good 16
F Science Foreign 25-30 excellent 22
M Engineering Foreign 25-30 excellent 18
F Science Foreign 25-30 excellent 25
M Science Canada 20-25 excellent 21
F Engineering Canada 20-25 excellent 18

Target class: Graduate students

gender major birth country age range gpa count

M Science Foreign <20 very good 18
F Business Canada <20 fair 20
M Business Canada <20 fair 22
F Science Canada 20-25 fair 24
M Engineering Foreign 20-25 very good 22
F Engineering Canada < 20 excellent 24

Contrasting class: Undergraduate students

Table 5.5: Candidate relation obtained for analytical characterization: the target class and the contrasting class.

3. In Step 3, relevance analysis is performed on the attributes in the candidate relation. Let C1 correspond to
the class graduate and class C2 correspond to undergraduate. There are 120 samples of class graduate and 130
samples of class undergraduate. To compute the information gain of each attribute, we �rst use Equation (5.4)
to compute the expected information needed to classify a given sample. This is:

I(s1; s2) = I(120; 130) = �
120

250
log2

120

250
�
130

250
log2

130

250
= 0:9988

Next, we need to compute the entropy of each attribute. Let's try the attribute major. We need to look at
the distribution of graduate and undergraduate students for each value of major. We compute the expected
information for each of these distributions.

for major = \Science": s11 = 84 s21 = 42 I(s11; s21) = 0.9183
for major = \Engineering": s12 = 36 s22 = 46 I(s12; s22) = 0.9892
for major = \Business": s13 = 0 s23 = 42 I(s13; s23) = 0

Using Equation (5.5), the expected information needed to classify a given sample if the samples are partitioned
according to major, is:

E(major) =
126

250
I(s11; s21) +

82

250
I(s12; s22) +

42

250
I(s13; s23) = 0:7873

Hence, the gain in information from such a partitioning would be:

Gain(age) = I(s1; s2)� E(major) = 0:2115

Similarly, we can compute the information gain for each of the remaining attributes. The information gain for
each attribute, sorted in increasing order, is : 0.0003 for gender, 0.0407 for birth country, 0.2115 for major,
0.4490 for gpa, and 0.5971 for age range.

4. In Step 4, suppose that we use an attribute relevance threshold of 0.1 to identify weakly relevant attributes. The
information gain of the attributes gender and birth country are below the threshold, and therefore considered
weakly relevant. Thus, they are removed. The contrasting class is also removed, resulting in the initial target
class working relation.

5. In Step 5, attribute-oriented induction is applied to the initial target class working relation, following Algorithm
5.3.1.

2
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5.5 Mining class comparisons: Discriminating between di�erent classes

In many applications, one may not be interested in having a single class (or concept) described or characterized,
but rather would prefer to mine a description which compares or distinguishes one class (or concept) from other
comparable classes (or concepts). Class discrimination or comparison (hereafter referred to as class comparison)
mines descriptions which distinguish a target class from its contrasting classes. Notice that the target and contrasting
classes must be comparable in the sense that they share similar dimensions and attributes. For example, the three
classes person, address, and item are not comparable. However, the sales in the last three years are comparable
classes, and so are computer science students versus physics students.

Our discussions on class characterization in the previous several sections handle multilevel data summarization
and characterization in a single class. The techniques developed should be able to be extended to handle class
comparison across several comparable classes. For example, attribute generalization is an interesting method used in
class characterization. When handling multiple classes, attribute generalization is still a valuable technique. However,
for e�ective comparison, the generalization should be performed synchronously among all the classes compared so
that the attributes in all of the classes can be generalized to the same levels of abstraction. For example, suppose
we are given the AllElectronics data for sales in 1999 and sales in 1998, and would like to compare these two classes.
Consider the dimension location with abstractions at the city, province or state, and country levels. Each class of
data should be generalized to the same location level. That is, they are synchronously all generalized to either the
city level, or the province or state level, or the country level. Ideally, this is more useful than comparing, say, the sales
in Vancouver in 1998 with the sales in U.S.A. in 1999 (i.e., where each set of sales data are generalized to di�erent
levels). The users, however, should have the option to over-write such an automated, synchronous comparison with
their own choices, when preferred.

5.5.1 Class comparison methods and implementations

\How is class comparison performed?"

In general, the procedure is as follows.

1. Data collection: The set of relevant data in the database is collected by query processing and is partitioned
respectively into a target class and one or a set of contrasting class(es).

2. Dimension relevance analysis: If there are many dimensions and analytical class comparison is desired,
then dimension relevance analysis should be performed on these classes as described in Section 5.4, and only
the highly relevant dimensions are included in the further analysis.

3. Synchronous generalization: Generalization is performed on the target class to the level controlled by
a user- or expert-speci�ed dimension threshold, which results in a prime target class relation/cuboid.
The concepts in the contrasting class(es) are generalized to the same level as those in the prime target class
relation/cuboid, forming the prime contrasting class(es) relation/cuboid.

4. Drilling down, rolling up, and other OLAP adjustment: Synchronous or asynchronous (when such an
option is allowed) drill-down, roll-up, and other OLAP operations, such as dicing, slicing, and pivoting, can be
performed on the target and contrasting classes based on the user's instructions.

5. Presentation of the derived comparison: The resulting class comparison description can be visualized
in the form of tables, graphs, and rules. This presentation usually includes a \contrasting" measure (such as
count%) which reects the comparison between the target and contrasting classes.

The above discussion outlines a general algorithm for mining analytical class comparisons in databases. In com-
parison with Algorithm 5.4.1 which mines analytical class characterization, the above algorithm involves synchronous
generalization of the target class with the contrasting classes so that classes are simultaneously compared at the same
levels of abstraction.

\Can class comparison mining be implemented e�ciently using data cube techniques?" Yes | the procedure is
similar to the implementation for mining data characterizations discussed in Section 5.3.2. A ag can be used to
indicate whether or not a tuple represents a target or contrasting class, where this ag is viewed as an additional
dimension in the data cube. Since all of the other dimensions of the target and contrasting classes share the same
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portion of the cube, the synchronous generalization and specialization are realized automatically by rolling up and
drilling down in the cube.

Let's study an example of mining a class comparison describing the graduate students and the undergraduate
students at Big-University.

Example 5.10 Mining a class comparison. Suppose that you would like to compare the general properties
between the graduate students and the undergraduate students at Big-University , given the attributes name, gender,
major, birth place, birth date, residence, phone#, and gpa (grade point average).

This data mining task can be expressed in DMQL as follows.

use Big University DB
mine comparison as \grad vs undergrad students"
in relevance to name, gender, major, birth place, birth date, residence, phone#, gpa
for \graduate students"
where status in \graduate"
versus \undergraduate students"
where status in \undergraduate"
analyze count%
from student

Let's see how this typical example of a data mining query for mining comparison descriptions can be processed.

name gender major birth place birth date residence phone# gpa

Jim Woodman M CS Vancouver, BC, Canada 8-12-76 3511 Main St., Richmond 687-4598 3.67
Scott Lachance M CS Montreal, Que, Canada 28-7-75 345 1st Ave., Vancouver 253-9106 3.70
Laura Lee F Physics Seattle, WA, USA 25-8-70 125 Austin Ave., Burnaby 420-5232 3.83

� � � � � � � � � � � � � � � � � � � � � � � �

Target class: Graduate students

name gender major birth place birth date residence phone# gpa

Bob Schumann M Chemistry Calgary, Alt, Canada 10-1-78 2642 Halifax St., Burnaby 294-4291 2.96

Amy Eau F Biology Golden, BC, Canada 30-3-76 463 Sunset Cres., Vancouver 681-5417 3.52
� � � � � � � � � � � � � � � � � � � � � � � �

Contrasting class: Undergraduate students

Table 5.6: Initial working relations: the target class vs. the contrasting class.

1. First, the query is transformed into two relational queries which collect two sets of task-relevant data: one
for the initial target class working relation, and the other for the initial contrasting class working relation, as
shown in Table 5.6. This can also be viewed as the construction of a data cube, where the status fgraduate,
undergraduateg serves as one dimension, and the other attributes form the remaining dimensions.

2. Second, dimension relevance analysis is performed on the two classes of data. After this analysis, irrelevant or
weakly relevant dimensions, such as name, gender, major, and phone# are removed from the resulting classes.
Only the highly relevant attributes are included in the subsequent analysis.

3. Third, synchronous generalization is performed: Generalization is performed on the target class to the levels
controlled by user- or expert-speci�ed dimension thresholds, forming the prime target class relation/cuboid. The
contrasting class is generalized to the same levels as those in the prime target class relation/cuboid, forming
the prime contrasting class(es) relation/cuboid, as presented in Table 5.7. The table shows that in comparison
with undergraduate students, graduate students tend to be older and have a higher GPA, in general.

4. Fourth, drilling and other OLAP adjustment are performed on the target and contrasting classes, based on the
user's instructions to adjust the levels of abstractions of the resulting description, as necessary.
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birth country age range gpa count%

Canada 20-25 good 5.53%
Canada 25-30 good 2.32%
Canada over 30 very good 5.86%

� � � � � � � � � � � �
other over 30 excellent 4.68%

Prime generalized relation for the target class: Graduate students

birth country age range gpa count%

Canada 15-20 fair 5.53%

Canada 15-20 good 4.53%
� � � � � � � � � � � �

Canada 25-30 good 5.02%
� � � � � � � � � � � �
other over 30 excellent 0.68%

Prime generalized relation for the contrasting class: Undergraduate students

Table 5.7: Two generalized relations: the prime target class relation and the prime contrasting class relation.

5. Finally, the resulting class comparison is presented in the form of tables, graphs, and/or rules. This visualization
includes a contrasting measure (such as count%) which compares between the target class and the contrasting
class. For example, only 2.32% of the graduate students were born in Canada, are between 25-30 years of age,
and have a \good" GPA, while 5.02% of undergraduates have these same characteristics.

2

5.5.2 Presentation of class comparison descriptions

\How can class comparison descriptions be visualized?"

As with class characterizations, class comparisons can be presented to the user in various kinds of forms, including
generalized relations, crosstabs, bar charts, pie charts, curves, and rules. With the exception of logic rules, these
forms are used in the same way for characterization as for comparison. In this section, we discuss the visualization
of class comparisons in the form of discriminant rules.

As is similar with characterization descriptions, the discriminative features of the target and contrasting classes
of a comparison description can be described quantitatively by a quantitative discriminant rule, which associates a
statistical interestingness measure, d-weight, with each generalized tuple in the description.

Let qa be a generalized tuple, and Cj be the target class, where qa covers some tuples of the target class. Note
that it is possible that qa also covers some tuples of the contrasting classes, particularly since we are dealing with
a comparison description. The d-weight for qa is the ratio of the number of tuples from the initial target class
working relation that are covered by qa to the total number of tuples in both the initial target class and contrasting
class working relations that are covered by qa. Formally, the d-weight of qa for the class Cj is de�ned as

d weight = count(qa 2 Cj)=�
m
i=1count(qa 2 Ci); (5.7)

where m is the total number of the target and contrasting classes, Cj is in fC1; : : : ; Cmg, and count(qa 2 Ci) is the
number of tuples of class Ci that are covered by qa. The range for the d-weight is [0, 1] (or [0%, 100%]).

A high d-weight in the target class indicates that the concept represented by the generalized tuple is primarily
derived from the target class, whereas a low d-weight implies that the concept is primarily derived from the contrasting
classes.

Example 5.11 In Example 5.10, suppose that the count distribution for the generalized tuple, \birth country =
\Canada" and age range = \25-30" and gpa = \good"" from Table 5.7 is as shown in Table 5.8.

The d-weight for the given generalized tuple is 90/(90 + 210) = 30% with respect to the target class, and 210/(90
+ 210) = 70% with respect to the contrasting class. That is, if a student was born in Canada, is in the age range
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status birth country age range gpa count

graduate Canada 25-30 good 90
undergraduate Canada 25-30 good 210

Table 5.8: Count distribution between graduate and undergraduate students for a generalized tuple.

of [25, 30), and has a \good" gpa, then based on the data, there is a 30% probability that she is a graduate student,
versus a 70% probability that she is an undergraduate student. Similarly, the d-weights for the other generalized
tuples in Table 5.7 can be derived. 2

A quantitative discriminant rule for the target class of a given comparison description is written in the form

8X; target class(X) ( condition(X) [d : d weight]; (5.8)

where the condition is formed by a generalized tuple of the description. This is di�erent from rules obtained in class
characterization where the arrow of implication is from left to right.

Example 5.12 Based on the generalized tuple and count distribution in Example 5.11, a quantitative discriminant
rule for the target class graduate student can be written as follows:

8X; graduate student(X) ( birth country(X) = \Canada"^ age range = \25 30" ^ gpa = \good"[d : 30%]:(5.9)

2

Notice that a discriminant rule provides a su�cient condition, but not a necessary one, for an object (or tuple) to
be in the target class. For example, Rule (5.9) implies that if X satis�es the condition, then the probability that X
is a graduate student is 30%. However, it does not imply the probability that X meets the condition, given that X
is a graduate student. This is because although the tuples which meet the condition are in the target class, other
tuples that do not necessarily satisfy this condition may also be in the target class, since the rule may not cover all
of the examples of the target class in the database. Therefore, the condition is su�cient, but not necessary.

5.5.3 Class description: Presentation of both characterization and comparison

\Since class characterization and class comparison are two aspects forming a class description, can we present both
in the same table or in the same rule?"

Actually, as long as we have a clear understanding of the meaning of the t-weight and d-weight measures and can
interpret them correctly, there is no additional di�culty in presenting both aspects in the same table. Let's examine
an example of expressing both class characterization and class discrimination in the same crosstab.

Example 5.13 Let Table 5.9 be a crosstab showing the total number (in thousands) of TVs and computers sold at
AllElectronics in 1998.

location n item TV computer both items

Europe 80 240 320
North America 120 560 680

both regions 200 800 1000

Table 5.9: A crosstab for the total number (count) of TVs and computers sold in thousands in 1998.

Let Europe be the target class and North America be the contrasting class. The t-weights and d-weights of the
sales distribution between the two classes are presented in Table 5.10. According to the table, the t-weight of a
generalized tuple or object (e.g., the tuple `item = \TV"') for a given class (e.g. the target class Europe) shows how
typical the tuple is of the given class (e.g., what proportion of these sales in Europe are for TVs?). The d-weight of
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location n item TV computer both items

count t-weight d-weight count t-weight d-weight count t-weight d-weight

Europe 80 25% 40% 240 75% 30% 320 100% 32%
North America 120 17.65% 60% 560 82.35% 70% 680 100% 68%

both regions 200 20% 100% 800 80% 100% 1000 100% 100%

Table 5.10: The same crosstab as in Table 4.8, but here the t-weight and d-weight values associated with each class
are shown.

a tuple shows how distinctive the tuple is in the given (target or contrasting) class in comparison with its rival class
(e.g., how do the TV sales in Europe compare with those in North America?).

For example, the t-weight for (Europe, TV) is 25% because the number of TVs sold in Europe (80 thousand)
represents only 25% of the European sales for both items (320 thousand). The d-weight for (Europe, TV) is 40%
because the number of TVs sold in Europe (80 thousand) represents 40% of the number of TVs sold in both the
target and the contrasting classes of Europe and North America, respectively (which is 200 thousand). 2

Notice that the count measure in the crosstab of Table 5.10 obeys the general property of a crosstab (i.e., the
count values per row and per column, when totaled, match the corresponding totals in the both items and both regions
slots, respectively, for count. However, this property is not observed by the t-weight and d-weight measures. This is
because the semantic meaning of each of these measures is di�erent from that of count, as we explained in Example
5.13.

\Can a quantitative characteristic rule and a quantitative discriminant rule be expressed together in the form of
one rule?" The answer is yes { a quantitative characteristic rule and a quantitative discriminant rule for the same
class can be combined to form a quantitative description rule for the class, which displays the t-weights and d-weights
associated with the corresponding characteristic and discriminant rules. To see how this is done, let's quickly review
how quantitative characteristic and discriminant rules are expressed.

� As discussed in Section 5.2.3, a quantitative characteristic rule provides a necessary condition for the given
target class since it presents a probability measurement for each property which can occur in the target class.
Such a rule is of the form

8X; target class(X) ) condition1(X)[t : w1] _ � � � _ conditionn(X)[t : wn]; (5.10)

where each condition represents a property of the target class. The rule indicates that ifX is in the target class,
the possibility that X satis�es conditioni is the value of the t-weight, wi, where i is in f1; : : : ; ng.

� As previously discussed in Section 5.5.1, a quantitative discriminant rule provides a su�cient condition for the
target class since it presents a quantitative measurement of the properties which occur in the target class versus
those that occur in the contrasting classes. Such a rule is of the form

8X; target class(X) ( condition1(X)[d : w1]_ � � � _ conditionn(X)[d : wn]:

The rule indicates that if X satis�es conditioni, there is a possibility of wi (the d-weight value) that x is in the
target class, where i is in f1; : : : ; ng.

A quantitative characteristic rule and a quantitative discriminant rule for a given class can be combined as follows
to form a quantitative description rule: (1) For each condition, show both the associated t-weight and d-weight;
and (2) A bi-directional arrow should be used between the given class and the conditions. That is, a quantitative
description rule is of the form

8X; target class(X) , condition1(X)[t : w1; d : w
0

1] _ � � � _ conditionn(X)[t : wn; d : w
0

n]: (5.11)

This form indicates that for i from 1 to n, if X is in the target class, there is a possibility of wi that X satis�es
conditioni; and if X satis�es conditioni, there is a possibility of w

0

i that X is in the target class.
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Example 5.14 It is straightfoward to transform the crosstab of Table 5.10 in Example 5.13 into a class description
in the form of quantitative description rules. For example, the quantitative description rule for the target class,
Europe, is

8X; Europe(X) , (item(X) = \TV ") [t : 25%; d : 40%] _ (item(X) = \computer") [t : 75%; d : 30%] (5.12)

The rule states that for the sales of TV's and computers at AllElectronics in 1998, if the sale of one of these items
occurred in Europe, then the probability of the item being a TV is 25%, while that of being a computer is 75%. On
the other hand, if we compare the sales of these items in Europe and North America, then 40% of the TV's were sold
in Europe (and therefore we can deduce that 60% of the TV's were sold in North America). Furthermore, regarding
computer sales, 30% of these sales took place in Europe. 2

5.6 Mining descriptive statistical measures in large databases

Earlier in this chapter, we discussed class description in terms of popular measures, such as count, sum, and average.
Relational database systems provide �ve built-in aggregate functions: count(), sum(), avg(), max(), and min().
These functions can also be computed e�ciently (in incremental and distributed manners) in data cubes. Thus, there
is no problem in including these aggregate functions as basic measures in the descriptive mining of multidimensional
data.

However, for many data mining tasks, users would like to learn more data characteristics regarding both central
tendency and data dispersion. Measures of central tendency include mean, median, mode, and midrange, while
measures of data dispersion include quartiles, outliers, variance, and other statistical measures. These descriptive
statistics are of great help in understanding the distribution of the data. Such measures have been studied extensively
in the statistical literature. However, from the data mining point of view, we need to examine how they can be
computed e�ciently in large, multidimensional databases.

5.6.1 Measuring the central tendency

� The most common and most e�ective numerical measure of the \center" of a set of data is the (arithmetic)
mean. Let x1; x2; : : : ; xn be a set of n values or observations. The mean of this set of values is

�x =
1

n

nX

i=1

xi: (5.13)

This corresponds to the built-in aggregate function, average (avg() in SQL), provided in relational database
systems. In most data cubes, sum and count are saved in precomputation. Thus, the derivation of average is
straightforward, using the formula average = sum=count.

� Sometimes, each value xi in a set may be associated with a weight wi, for i = 1; : : : ; n. The weights reect
the signi�cance, importance, or occurrence frequency attached to their respective values. In this case, we can
compute

�x =

Pn

i=1wixiPn

i=1wi

: (5.14)

This is called the weighted arithmetic mean or the weighted average.

In Chapter 2, a measure was de�ned as algebraic if it can be computed from distributive aggregate measures.
Since avg() can be computed by sum()/count(), where both sum() and count() are distributive aggregate
measures in the sense that they can be computed in a distributive manner, then avg() is an algebraic measure.
One can verify that the weighted average is also an algebraic measure.

� Although the mean is the single most useful quantity that we use to describe a set of data, it is not the only,
or even always the best, way of measuring the center of a set of data. For skewed data, a better measure of
center of data is the median, M . Suppose that the values forming a given set of data are in numerical order.
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The median is the middle value of the ordered set if the number of values n is an odd number; otherwise (i.e.,
if n is even), it is the average of the middle two values.

Based on the categorization of measures in Chapter 2, the median is neither a distributive measure nor an
algebraic measure | it is a holistic measure in the sense that it cannot be computed by partitioning a set of
values arbitrarily into smaller subsets, computing their medians independently, and merging the median values
of each subset. On the contrary, count(), sum(), max(), and min() can be computed in this manner (being
distributive measures), and are therefore easier to compute than the median.

Although it is not easy to compute the exact median value in a large database, an approximate median can be
computed e�ciently. For example, for grouped data, the median, obtained by interpolation, is given by

median = L1 + (
n=2 + (

P
f)l

fmedian

)c: (5.15)

where L1 is the lower class boundary of (i.e., lowest value for) the class containing the median, n is the number
of values in the data, (

P
f)l is the sum of the frequencies of all of the classes that are lower than the median

class, and fmedian is the frequency of the median class, and c is the size of the median class interval.

� Another measure of central tendency is the mode. The mode for a set of data is the value that occurs most
frequently in the set. It is possible for the greatest frequency to correspond to several di�erent values, which
results in more than one mode. Data sets with one, two, or three modes are respectively called unimodal,
bimodal, and trimodal. If a data set has more than three modes, it is multimodal. At the other extreme,
if each data value occurs only once, then there is no mode.

For unimodal frequency curves that are moderately skewed (asymmetrical), we have the following empirical
relation

mean �mode = 3� (mean �median): (5.16)

This implies that the mode for unimodal frequency curves that are moderately skewed can easily be computed
if the mean and median values are known.

� The midrange, that is, the average of the largest and smallest values in a data set, can be used to measure the
central tendency of the set of data. It is trivial to compute the midrange using the SQL aggregate functions,
max() and min().

5.6.2 Measuring the dispersion of data

The degree to which numeric data tend to spread is called the dispersion, or variance of the data. The most
common measures of data dispersion are the �ve-number summary (based on quartiles), the interquartile range, and
standard deviation. The plotting of boxplots (which show outlier values) also serves as a useful graphical method.

Quartiles, outliers and boxplots

� The kth percentile of a set of data in numerical order is the value x having the property that k percent of
the data entries lies at or below x. Values at or below the median M (discussed in the previous subsection)
correspond to the 50-th percentile.

� The most commonly used percentiles other than the median are quartiles. The �rst quartile, denoted by
Q1, is the 25-th percentile; and the third quartile, denoted by Q3, is the 75-th percentile.

� The quartiles together with the median give some indication of the center, spread, and shape of a distribution.
The distance between the �rst and third quartiles is a simple measure of spread that gives the range covered
by the middle half of the data. This distance is called the interquartile range (IQR), and is de�ned as

IQR = Q3 � Q1: (5.17)

We should be aware that no single numerical measure of spread, such as IQR, is very useful for describing
skewed distributions. The spreads of two sides of a skewed distribution are unequal. Therefore, it is more
informative to also provide the two quartiles Q1 and Q3, along with the median, M .
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unit price ($) number of items sold

40 275
43 300
47 250
.. ..
74 360
75 515
78 540
.. ..
115 320
117 270
120 350

Table 5.11: A set of data.

� One common rule of thumb for identifying suspected outliers is to single out values falling at least 1:5� IQR

above the third quartile or below the �rst quartile.

� Because Q1, M , and Q3 contain no information about the endpoints (e.g., tails) of the data, a fuller summary
of the shape of a distribution can be obtained by providing the highest and lowest data values as well. This is
known as the �ve-number summary. The �ve-number summary of a distribution consists of the medianM ,
the quartiles Q1 and Q3, and the smallest and largest individual observations, written in the order

Minimum; Q1; M; Q3; Maximum:

� A popularly used visual representation of a distribution is the boxplot. In a boxplot:

1. The ends of the box are at the quartiles, so that the box length is the interquartile range, IQR.

2. The median is marked by a line within the box.

3. Two lines (called whiskers) outside the box extend to the smallest (Minimum) and largest (Maximum)
observations.

Figure 5.4: A boxplot for the data set of Table 5.11.

When dealing with a moderate numbers of observations, it is worthwhile to plot potential outliers individually.
To do this in a boxplot, the whiskers are extended to the extreme high and low observations only if these
values are less than 1:5� IQR beyond the quartiles. Otherwise, the whiskers terminate at the most extreme
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observations occurring within 1:5� IQR of the quartiles. The remaining cases are plotted individually. Figure
5.4 shows a boxplot for the set of price data in Table 5.11, where we see that Q1 is $60, Q3 is $100, and the
median is $80.

Based on similar reasoning as in our analysis of the median in Section 5.6.1, we can conclude that Q1 and
Q3 are holistic measures, as is IQR. The e�cient computation of boxplots or even approximate boxplots is
interesting regarding the mining of large data sets.

Variance and standard deviation

The variance of n observations x1; x2; : : : ; xn is

s2 =
1

n � 1

nX

i=1

(xi � �x)2 =
1

n� 1
[
X

x2i �
1

n
(
X

xi)
2] (5.18)

The standard deviation s is the square root of the variance s2.

The basic properties of the standard deviation s as a measure of spread are:

� s measures spread about the mean and should be used only when the mean is chosen as the measure of center.

� s = 0 only when there is no spread, that is, when all observations have the same value. Otherwise s > 0.

Notice that variance and standard deviation are algebraic measures because n (which is count() in SQL),
P

xi
(which is the sum() of xi), and

P
x2i (which is the sum() of x2i ) can be computed in any partition and then merged

to feed into the algebraic equation (5.18). Thus the computation of the two measures is scalable in large databases.

5.6.3 Graph displays of basic statistical class descriptions

Aside from the bar charts, pie charts, and line graphs discussed earlier in this chapter, there are also a few additional
popularly used graphs for the display of data summaries and distributions. These include histograms, quantile plots,
Q-Q plots, scatter plots, and loess curves.

� A histogram, or frequency histogram, is a univariate graphical method. It denotes the frequencies of
the classes present in a given set of data. A histogram consists of a set of rectangles where the area of each
rectangle is proportional to the relative frequency of the class it represents. The base of each rectangle is on
the horizontal axis, centered at a \class" mark, and the base length is equal to the class width. Typically, the
class width is uniform, with classes being de�ned as the values of a categoric attribute, or equi-width ranges
of a discretized continuous attribute. In these cases, the height of each rectangle is the relative frequency (or
frequency) of the class it represents, and the histogram is generally referred to as a bar chart. Alternatively,
classes for a continuous attribute may be de�ned by ranges of non-uniform width. In this case, for a given
class, the class width is equal to the range width, and the height of the rectangle is the class density (that is,
the relative frequency of the class, divided by the class width). Partitioning rules for constructing histograms
were discussed in Chapter 3.

Figure 5.5 shows a histogram for the data set of Table 5.11, where classes are de�ned by equi-width ranges
representing $10 increments. Histograms are at least a century old, and are a widely used univariate graphical
method. However, they may not be as e�ective as the quantile plot, Q-Q plot and boxplot methods for
comparing groups of univariate observations.

� A quantile plot is a simple and e�ective way to have a �rst look at data distribution. First, it displays all
of the data (allowing the user to assess both the overall behavior and unusual occurrences). Second, it plots
quantile information. The mechanism used in this step is slightly di�erent from the percentile computation.
Let x(i), for i = 1 to n, be the data ordered from the smallest to the largest; thus x(1) is the smallest observation
and x(n) is the largest. Each observation x(i) is paired with a percentage, fi, which indicates that 100fi% of
the data are below or equal to the value x(i). Let

fi =
i � 0:5

n
:
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Figure 5.5: A histogram for the data set of Table 5.11.

These numbers increase in equal steps of 1=n beginning with 1=2n, which is slightly above zero, and ending with
1� 1=2n, which is slightly below one. On a quantile plot, x(i) is graphed against fi. This allows visualization
of the fi quantiles. Figure 5.6 shows a quantile plot for the set of data in Table 5.11.

Figure 5.6: A quantile plot for the data set of Table 5.11.

� A Q-Q plot, or quantile-quantile plot, is a powerful visualization method for comparing the distributions
of two or more sets of univariate observations. When distributions are compared, the goal is to understand
how the distributions di�er from one data set to the next. The most e�ective way to investigate the shifts of
distributions is to compare corresponding quantiles.

Suppose there are just two sets of univariate observations to be compared. Let x(1); : : : ; x(n) be the �rst data
set, ordered from smallest to largest. Let y(1); : : : ; y(m) be the second, also ordered. Suppose m � n. If m = n,
then y(i) and x(i) are both (i�0:5)=n quantiles of their respective data sets, so on the Q-Q plot, y(i) is graphed
against x(i); that is, the ordered values for one set of data are graphed against the ordered values of the other
set. If m < n, the y(i) is the (i � 0:5)=m quantile of the y data, and y(i) is graphed against the (i � 0:5)=m
quantile of the x data, which typically must be computed by interpolation. With this method, there are always
m points on the graph, where m is the number of values in the smaller of the two data sets. Figure 5.7 shows
a quantile-quantile plot for the data set of Table 5.11.
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Figure 5.7: A quantile-quantile plot for the data set of Table 5.11.

� A scatter plot is one of the most e�ective graphical methods for determining if there appears to be a relation-
ship, pattern, or trend between two quantitative variables. To construct a scatter plot, each pair of values is
treated as a pair of coordinates in an algebraic sense, and plotted as points in the plane. The scatter plot is a
useful exploratory method for providing a �rst look at bivariate data to see how they are distributed throughout
the plane, for example, and to see clusters of points, outliers, and so forth. Figure 5.8 shows a scatter plot for
the set of data in Table 5.11.

Figure 5.8: A scatter plot for the data set of Table 5.11.

� A loess curve is another important exploratory graphic aid which adds a smooth curve to a scatter plot in
order to provide better perception of the pattern of dependence. The word loess is short for local regression.
Figure 5.9 shows a loess curve for the set of data in Table 5.11.

Two parameters need to be chosen to �t a loess curve. The �rst parameter, �, is a smoothing parameter. It
can be any positive number, but typical values are between 1=4 to 1. The goal in choosing � is to produce a �t
that is as smooth as possible without unduly distorting the underlying pattern in the data. As � increases, the
curve becomes smoother. If � becomes large, the �tted function could be very smooth. There may be some
lack of �t, however, indicating possible \missing" data patterns. If � is very small, the underlying pattern is
tracked, yet over�tting of the data may occur, where local \wiggles" in the curve may not be supported by
the data. The second parameter, �, is the degree of polynomials that are �tted by the method; � can be 1
or 2. If the underlying pattern of the data has a \gentle" curvature with no local maxima and minima, then
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locally linear �tting is usually su�cient (� = 1). However, if there are local maxima or minima, then locally
quadratic �tting (� = 2) typically does a better job of following the pattern of the data and maintaining local
smoothness.

Figure 5.9: A loess curve for the data set of Table 5.11.

5.7 Discussion

We have presented a set of scalable methods for mining concept or class descriptions in large databases. In this section,
we discuss related issues regarding such descriptions. These include a comparison of the cube-based and attribute-
oriented induction approaches to data generalization with typical machine learning methods, the implementation of
incremental and parallel mining of concept descriptions, and interestingness measures for concept description.

5.7.1 Concept description: A comparison with typical machine learning methods

In this chapter, we studied a set of database-oriented methods for mining concept descriptions in large databases.
These methods included a data cube-based and an attribute-oriented induction approach to data generalization for
concept description. Other inuential concept description methods have been proposed and studied in the machine
learning literature since the 1980s. Typical machine learning methods for concept description follow a learning-from-
examples paradigm. In general, such methods work on sets of concept or class-labeled training examples which are
examined in order to derive or learn a hypothesis describing the class under study.

\What are the major di�erences between methods of learning-from-examples and the data mining methods pre-
sented here?"

� First, there are di�erences in the philosophies of the machine learning and data mining approaches, and their
basic assumptions regarding the concept description problem.

In most of the learning-from-examples algorithms developed in machine learning, the set of examples to be
analyzed is partitioned into two sets: positive examples and negative ones, respectively representing target
and contrasting classes. The learning process selects one positive example at random, and uses it to form a
hypothesis describing objects of that class. The learning process then performs generalization on the hypothesis
using the remaining positive examples, and specialization using the negative examples. In general, the resulting
hypothesis covers all the positive examples, but none of the negative examples.

A database usually does not store the negative data explicitly. Thus no explicitly speci�ed negative examples
can be used for specialization. This is why, for analytical characterization mining and for comparison mining
in general, data mining methods must collect a set of comparable data which are not in the target (positive)
class, for use as negative data (Sections 5.4 and 5.5). Most database-oriented methods also therefore tend to
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be generalization-based. Even though most provide the drill-down (specialization) operation, this operation is
essentially implemented by backtracking the generalization process to a previous state.

Another major di�erence between machine learning and database-oriented techniques for concept description
concerns the size of the set of training examples. For traditional machine learning methods, the training set
is typically relatively small in comparison with the data analyzed by database-oriented techniques. Hence, for
machine learning methods, it is easier to �nd descriptions which cover all of the positive examples without
covering any negative examples. However, considering the diversity and huge amount of data stored in real-
world databases, it is unlikely for analysis of such data to derive a rule or pattern which covers all of the
positive examples but none of the negative ones. Instead, what one may expect to �nd is a set of features or
rules which cover a majority of the data in the positive class, maximally distinguishing the positive from the
negative examples. (This can also be described as a probability distribution).

� Second, distinctions between the machine learning and database-oriented approaches also exist regarding the
methods of generalization used.

Both approaches do employ attribute removal and attribute generalization (also known as concept tree ascen-
sion) as their main generalization techniques. Consider the set of training examples as a set of tuples. The
machine learning approach thus performs generalization tuple by tuple, whereas the database-oriented approach
performs generalization on an attribute by attribute (or entire dimension) basis.

In the tuple by tuple strategy of the machine learning approach, the training examples are examined one at
a time in order to induce generalized concepts. In order to form the most speci�c hypothesis (or concept
description) that is consistent with all of the positive examples and none of the negative ones, the algorithm
must search every node in the search space representing all of the possible concepts derived from generalization
on each training example. Since di�erent attributes of a tuple may be generalized to various levels of abstraction,
the number of nodes searched for a given training example may involve a huge number of possible combinations.

On the other hand, a database approach employing an attribute-oriented strategy performs generalization
on each attribute or dimension uniformly for all of the tuples in the data relation at the early stages of
generalization. Such an approach essentially focuses its attention on individual attributes, rather than on
combinations of attributes. This is referred to as factoring the version space, where version space is de�ned
as the subset of hypotheses consistent with the training examples. Factoring the version space can substantially
improve the computational e�ciency. Suppose there are k concept hierarchies used in the generalization and
there are p nodes in each concept hierarchy. The total size of k factored version spaces is p � k. In contrast,
the size of the unfactored version space searched by the machine learning approach is pk for the same concept
tree.

Notice that algorithms which, during the early generalization stages, explore many possible combinations of
di�erent attribute-value conditions given a large number of tuples cannot be productive since such combinations
will eventually be merged during further generalizations. Di�erent possible combinations should be explored
only when the relation has �rst been generalized to a relatively smaller relation, as is done in the database-
oriented approaches described in this chapter.

� Another obvious advantage of the attribute-oriented approach over many other machine learning algorithms is
the integration of the data mining process with set-oriented database operations. In contrast to most existing
learning algorithms which do not take full advantages of database facilities, the attribute-oriented induction
approach primarily adopts relational operations, such as selection, join, projection (extracting task-relevant
data and removing attributes), tuple substitution (ascending concept trees), and sorting (discovering common
tuples among classes). Since relational operations are set-oriented whose implementation has been optimized
in many existing database systems, the attribute-oriented approach is not only e�cient but also can easily be
exported to other relational systems. This comment applies to data cube-based generalization algorithms as
well. The data cube-based approach explores more optimization techniques than traditional database query
processing techniques by incorporating sparse cube techniques, various methods of cube computation, as well
as indexing and accessing techniques. Therefore, a high performance gain of database-oriented algorithms over
machine learning techniques, is expected when handling large data sets.
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5.7.2 Incremental and parallel mining of concept description

Given the huge amounts of data in a database, it is highly preferable to update data mining results incrementally
rather than mining from scratch on each database update. Thus incremental data mining is an attractive goal for
many kinds of mining in large databases or data warehouses.

Fortunately, it is straightforward to extend the database-oriented concept description mining algorithms for
incremental data mining.

Let's �rst examine extending the attribute-oriented induction approach for use in incremental data mining.
Suppose a generalized relation R is stored in the database. When a set of new tuples, �DB, is inserted into the
database, attribute-oriented induction can be performed on �DB in order to generalize the attributes to the same
conceptual levels as the respective corresponding attributes in the generalized relation, R. The associated aggregation
information, such as count, sum, etc., can be calculated by applying the generalization algorithm to �DB rather
than to R. The generalized relation so derived, �R, on �DB, can then easily be merged into the generalized relation
R, since R and �R share the same dimensions and exist at the same abstraction levels for each dimension. The
union, R [ �R, becomes a new generalized relation, R0. Minor adjustments, such as dimension generalization or
specialization, can be performed on R0 as speci�ed by the user, if desired. Similarly, a set of deletions can be viewed
as the deletion of a small database, �DB, from DB. The incremental update should be the di�erence R � �R,
where R is the existing generalized relation and �R is the one generated from �DB. Similar algorithms can be
worked out for data cube-based concept description. (This is left as an exercise).

Data sampling methods, parallel algorithms, and distributed algorithms can be explored for concept description
mining, based on the same philosophy. For example, attribute-oriented induction can be performed by sampling a
subset of data from a huge set of task-relevant data or by �rst performing induction in parallel on several partitions
of the task-relevant data set, and then merging the generalized results.

5.7.3 Interestingness measures for concept description

\When examining concept descriptions, how can the data mining system objectively evaluate the interestingness of
each description?"

Di�erent users may have di�erent preferences regarding what makes a given description interesting or useful.
Let's examine a few interestingness measures for mining concept descriptions.

1. Signi�cance threshold:

Users may like to examine what kind of objects contribute \signi�cantly" to the summary of the data. That is,
given a concept description in the form of a generalized relation, say, they may like to examine the generalized
tuples (acting as \object descriptions") which contribute a nontrivial weight or portion to the summary, while
ignoring those which contribute only a negligible weight to the summary. In this context, one may introduce a
signi�cance threshold to be used in the following manner: if the weight of a generalized tuple/object is lower
than the threshold, it is considered to represent only a negligible portion of the database and can therefore
be ignored as uninteresting. Notice that ignoring such negligible tuples does not mean that they should be
removed from the intermediate results (i.e., the prime generalized relation, or the data cube, depending on
the implementation) since they may contribute to subsequent further exploration of the data by the user via
interactive rolling up or drilling down of other dimensions and levels of abstraction. Such a threshold may also
be called the support threshold, adopting the term popularly used in association rule mining.

For example, if the signi�cance threshold is set to 1%, a generalized tuple (or data cube cell) which represents
less than 1% in count of the number of tuples (objects) in the database is omitted in the result presentation.

Moreover, although the signi�cance threshold, by default, is calculated based on count, other measures can be
used. For example, one may use the sum of an amount (such as total sales) as the signi�cance measure to
observe the major objects contributing to the overall sales. Alternatively, the t-weight and d-weight measures
studied earlier (Sections 5.2.3 and 5.5.2), which respectively indicate the typicality and discriminability of
generalized tuples (or objects), may also be used.

2. Deviation threshold. Some users may already know the general behavior of the data and would like to
instead explore the objects which deviate from this general behavior. Thus, it is interesting to examine how to
identify the kind of data values that are considered outliers, or deviations.



5.8. SUMMARY 31

Suppose the data to be examined are numeric. As discussed in Section 5.6, a common rule of thumb identi�es
suspected outliers as those values which fall at least 1:5 � IQR above the third quartile or below the �rst
quartile. Depending on the application at hand, however, such a rule of thumb may not always work well. It
may therefore be desirable to provide a deviation threshold as an adjustable threshold to enlarge or shrink
the set of possible outliers. This facilitates interactive analysis of the general behavior of outliers. We leave the
identi�cation of outliers in time-series data to Chapter 9, where time-series analysis will be discussed.

5.8 Summary

� Data mining can be classi�ed into descriptive data mining and predictive data mining. Concept description
is the most basic form of descriptive data mining. It describes a given set of task-relevant data in a concise
and summarative manner, presenting interesting general properties of the data.

� Concept (or class) description consists of characterization and comparison (or discrimination). The
former summarizes and describes a collection of data, called the target class; whereas the latter summarizes
and distinguishes one collection of data, called the target class, from other collection(s) of data, collectively
called the contrasting class(es).

� There are two general approaches to concept characterization: the data cube OLAP-based approach

and the attribute-oriented induction approach. Both are attribute- or dimension-based generalization
approaches. The attribute-oriented induction approach can be implemented using either relational or data
cube structures.

� The attribute-oriented induction approach consists of the following techniques: data focusing, gener-
alization by attribute removal or attribute generalization, count and aggregate value accumulation, attribute
generalization control, and generalization data visualization.

� Generalized data can be visualized in multiple forms, including generalized relations, crosstabs, bar charts, pie
charts, cube views, curves, and rules. Drill-down and roll-up operations can be performed on the generalized
data interactively.

� Analytical data characterization/comparison performs attribute and dimension relevance analysis in
order to �lter out irrelevant or weakly relevant attributes prior to the induction process.

� Concept comparison can be performed by the attribute-oriented induction or data cube approach in a
manner similar to concept characterization. Generalized tuples from the target and contrasting classes can be
quantitatively compared and contrasted.

� Characterization and comparison descriptions (which form a concept description) can both be visualized in
the same generalized relation, crosstab, or quantitative rule form, although they are displayed with di�erent
interestingness measures. These measures include the t-weight (for tuple typicality) and d-weight (for tuple
discriminability).

� From the descriptive statistics point of view, additional statistical measures should be introduced in describ-
ing central tendency and data dispersion. Quantiles, variations, and outliers are useful additional information
which can be mined in databases. Boxplots, quantile plots, scattered plots, and quantile-quantile plots are
useful visualization tools in descriptive data mining.

� In comparison with machine learning algorithms, database-oriented concept description leads to e�ciency and
scalability in large databases and data warehouses.

� Concept description mining can be performed incrementally, in parallel, or in a distributed manner, by making
minor extensions to the basic methods involved.

� Additional interestingness measures, such as the signi�cance threshold or deviation threshold, can be
included and dynamically adjusted by users for mining interesting class descriptions.
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Exercises

1. Suppose that the employee relation in a store database has the data set presented in Table 5.12.

name gender department age years worked residence salary # of children

Jamie Wise M Clothing 21 3 3511 Main St., Richmond $20K 0
Sandy Jones F Shoe 39 20 125 Austin Ave., Burnaby $25K 2

� � � � � � � � � � � � � � � � � � � � � � � �

Table 5.12: The employee relation for data mining.

(a) Propose a concept hierarchy for each of the attributes department, age, years worked, residence, salary
and # of children.

(b) Mine the prime generalized relation for characterization of all of the employees.

(c) Drill down along the dimension years worked.

(d) Present the above description as a crosstab, bar chart, pie chart, and as logic rules.

(e) Characterize only the employees is the Shoe Department.

(f) Compare the set of employees who have children vs. those who have no children.

2. Outline the major steps of the data cube-based implementation of class characterization. What are the major
di�erences between this method and a relational implementation such as attribute-oriented induction? Discuss
which method is most e�cient and under what conditions this is so.

3. Discuss why analytical data characterization is needed and how it can be performed. Compare the result of
two induction methods: (1) with relevance analysis, and (2) without relevance analysis.

4. Give three additional commonly used statistical measures (i.e., not illustrated in this chapter) for the charac-
terization of data dispersion, and discuss how they can be computed e�ciently in large databases.

5. Outline a data cube-based incremental algorithm for mining analytical class comparisons.

6. Outline a method for (1) parallel and (2) distributed mining of statistical measures.

Bibliographic Notes

Generalization and summarization methods have been studied in the statistics literature long before the onset of
computers. Good summaries of statistical descriptive data mining methods include Cleveland [7], and Devore [10].
Generalization-based induction techniques, such as learning-from-examples, were proposed and studied in the machine
learning literature before data mining became active. A theory and methodology of inductive learning was proposed
in Michalski [23]. Version space was proposed by Mitchell [25]. The method of factoring the version space described
in Section 5.7 was presented by Subramanian and Feigenbaum [30]. Overviews of machine learning techniques can
be found in Dietterich and Michalski [11], Michalski, Carbonell, and Mitchell [24], and Mitchell [27].

The data cube-based generalization technique was initially proposed by Codd, Codd, and Salley [8] and has
been implemented in many OLAP-based data warehouse systems, such as Kimball [20]. Gray et al. [13] proposed
a cube operator for computing aggregations in data cubes. Recently, there have been many studies on the e�cient
computation of data cubes, which contribute to the e�cient computation of data generalization. A comprehensive
survey on the topic can be found in Chaudhuri and Dayal [6].

Database-oriented methods for concept description explore scalable and e�cient techniques for describing large
sets of data in databases and data warehouses. The attribute-oriented induction method described in this chapter
was �rst proposed by Cai, Cercone, and Han [5] and further extended by Han, Cai, and Cercone [15], and Han and
Fu [16].

There are many methods for assessing attribute relevance. Each has its own bias. The information gain measure is
biased towards attributes with many values. Many alternatives have been proposed, such as gain ratio (Quinlan [29])
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which considers the probability of each attribute value. Other relevance measures include the gini index (Breiman
et al. [2]), the �2 contingency table statistic, and the uncertainty coe�cient (Johnson and Wickern [19]). For a
comparison of attribute selection measures for decision tree induction, see Buntine and Niblett [3]. For additional
methods, see Liu and Motoda [22], Dash and Liu [9], Almuallim and Dietterich [1], and John [18].

For statistics-based visualization of data using boxplots, quantile plots, quantile-quantile plots, scattered plots,
and loess curves, see Cleveland [7], and Devore [10]. Ng and Knorr [21] studied a uni�ed approach for de�ning and
computing outliers.



34 CHAPTER 5. CONCEPT DESCRIPTION: CHARACTERIZATION AND COMPARISON



Bibliography

[1] H. Almuallim and T. G. Dietterich. Learning with many irrelevant features. In Proc. 9th National Conf. on
Arti�cial Intelligence (AAAI'91), pages 547{552, July 1991.

[2] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classi�cation and Regression Trees. Wadsworth International
Group, 1984.

[3] W. L. Buntine and Tim Niblett. A further comparison of splitting rules for decision-tree induction. Machine
Learning, 8:75{85, 1992.

[4] Y. Cai, N. Cercone, and J. Han. Attribute-oriented induction in relational databases. In G. Piatetsky-Shapiro
and W. J. Frawley, editors, Knowledge Discovery in Databases, pages 213{228. AAAI/MIT Press, 1991.

[5] Y. Cai, N. Cercone, and J. Han. Attribute-oriented induction in relational databases. In G. Piatetsky-Shapiro
and W. J. Frawley, editors, Knowledge Discovery in Databases, pages 213{228. AAAI/MIT Press Also in Proc.
IJCAI-89 Workshop Knowledge Discovery in Databases, Detroit, MI, August 1989, 26-36., 1991.

[6] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. ACM SIGMOD Record,
26:65{74, 1997.

[7] W. Cleveland. Visualizing data. In AT&T Bell Laboratories, Hobart Press, Summit NJ, 1993.

[8] E. F Codd, S. B. Codd, and C. T. Salley. Providing OLAP (on-line analytical processing) to user-analysts: An
IT mandate. In E. F. Codd & Associates available at http://www.arborsoft.com/OLAP.html, 1993.

[9] M. Dash and H. Liu. Feature selecion for classi�caion. In Intelligent Data Analysis, volume 1 of 3, 1997.

[10] J. L. Devore. Probability and Statistics for Engineering and the Science, 4th ed. Duxbury Press, 1995.

[11] T. G. Dietterich and R. S. Michalski. A comparative review of selected methods for learning from examples.
In Michalski et al., editor, Machine Learning: An Arti�cial Intelligence Approach, Vol. 1, pages 41{82. Morgan
Kaufmann, 1983.

[12] M. Genesereth and N. Nilsson. Logical Foundations of Arti�cial Intelligence. Morgan Kaufmann, 1987.

[13] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational operator generalizing group-by,
cross-tab and sub-totals. In Proc. 1996 Int. Conf. Data Engineering, pages 152{159, New Orleans, Louisiana,
Feb. 1996.

[14] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query processing in data warehousing environment. In
Proc. 21st Int. Conf. Very Large Data Bases, pages 358{369, Zurich, Switzerland, Sept. 1995.

[15] J. Han, Y. Cai, and N. Cercone. Data-driven discovery of quantitative rules in relational databases. IEEE
Trans. Knowledge and Data Engineering, 5:29{40, 1993.

[16] J. Han and Y. Fu. Exploration of the power of attribute-oriented induction in data mining. In U.M. Fayyad,
G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data
Mining, pages 399{421. AAAI/MIT Press, 1996.

[17] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes e�ciently. In Proc. 1996 ACM-
SIGMOD Int. Conf. Management of Data, pages 205{216, Montreal, Canada, June 1996.

35



36 BIBLIOGRAPHY

[18] G. H. John. Enhancements to the Data Mining Process. Ph.D. Thesis, Computer Science Dept., Stanford
Univeristy, 1997.

[19] R. A. Johnson and D. W. Wickern. Applied Multivariate Statistical Analysis, 3rd ed. Prentice Hall, 1992.

[20] R. Kimball. The Data Warehouse Toolkit. John Wiley & Sons, New York, 1996.

[21] E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets. In Proc. 1998 Int. Conf.
Very Large Data Bases, pages 392{403, New York, NY, August 1998.

[22] H. Liu and H. Motoda. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Pub-
lishers, 1998.

[23] R. S. Michalski. A theory and methodology of inductive learning. In Michalski et al., editor, Machine Learning:
An Arti�cial Intelligence Approach, Vol. 1, pages 83{134. Morgan Kaufmann, 1983.

[24] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell. Machine Learning, An Arti�cial Intelligence Approach,
Vol. 2. Morgan Kaufmann, 1986.

[25] T. M. Mitchell. Version spaces: A candidate elimination approach to rule learning. In Proc. 5th Int. Joint Conf.
Arti�cial Intelligence, pages 305{310, Cambridge, MA, 1977.

[26] T. M. Mitchell. Generalization as search. Arti�cial Intelligence, 18:203{226, 1982.

[27] T. M. Mitchell. Machine Learning. McGraw Hill, 1997.

[28] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81{106, 1986.

[29] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[30] D. Subramanian and J. Feigenbaum. Factorization in experiment generation. In Proc. 1986 AAAI Conf., pages
518{522, Philadelphia, PA, August 1986.

[31] J. Widom. Research problems in data warehousing. In Proc. 4th Int. Conf. Information and Knowledge Man-
agement, pages 25{30, Baltimore, Maryland, Nov. 1995.

[32] W. P. Yan and P. Larson. Eager aggregation and lazy aggregation. In Proc. 21st Int. Conf. Very Large Data
Bases, pages 345{357, Zurich, Switzerland, Sept. 1995.

[33] W. Ziarko. Rough Sets, Fuzzy Sets and Knowledge Discovery. Springer-Verlag, 1994.

Bzupages.com


