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Chapter 4

Primitives for Data Mining

September 7, 1999

A popular misconception about data mining is to expect that data mining systems can autonomously dig out
all of the valuable knowledge that is embedded in a given large database, without human intervention or guidance.
Although it may at �rst sound appealing to have an autonomous data mining system, in practice, such systems will
uncover an overwhelmingly large set of patterns. The entire set of generated patterns may easily surpass the size
of the given database! To let a data mining system \run loose" in its discovery of patterns, without providing it
with any indication regarding the portions of the database that the user wants to probe or the kinds of patterns
the user would �nd interesting, is to let loose a data mining \monster". Most of the patterns discovered would be
irrelevant to the analysis task of the user. Furthermore, many of the patterns found, though related to the analysis
task, may be di�cult to understand, or lack of validity, novelty, or utility | making them uninteresting. Thus, it is
neither realistic nor desirable to generate, store, or present all of the patterns that could be discovered from a given
database.

A more realistic scenario is to expect that users can communicate with the data mining system using a set of
data mining primitives designed in order to facilitate e�cient and fruitful knowledge discovery. Such primitives
include the speci�cation of the portions of the database or the set of data in which the user is interested (including
the database attributes or data warehouse dimensions of interest), the kinds of knowledge to be mined, background
knowledge useful in guiding the discovery process, interestingness measures for pattern evaluation, and how the
discovered knowledge should be visualized. These primitives allow the user to interactively communicate with the
data mining system during discovery in order to examine the �ndings from di�erent angles or depths, and direct the
mining process.

A data mining query language can be designed to incorporate these primitives, allowing users to exibly interact
with data mining systems. Having a data mining query language also provides a foundation on which friendly
graphical user interfaces can be built. In this chapter, you will learn about the data mining primitives in detail, as
well as study the design of a data mining query language based on these principles.

4.1 Data mining primitives: what de�nes a data mining task?

Each user will have a data mining task in mind, i.e., some form of data analysis that she would like to have
performed. A data mining task can be speci�ed in the form of a data mining query, which is input to the data
mining system. A data mining query is de�ned in terms of the following primitives, as illustrated in Figure 4.1.

1. task-relevant data: This is the database portion to be investigated. For example, suppose that you are a
manager of AllElectronics in charge of sales in the United States and Canada. In particular, you would like
to study the buying trends of customers in Canada. Rather than mining on the entire database, you can
specify that only the data relating to customer purchases in Canada need be retrieved, along with the related
customer pro�le information. You can also specify attributes of interest to be considered in the mining process.
These are referred to as relevant attributes1. For example, if you are interested only in studying possible

1If mining is to be performed on data from a multidimensional data cube, the user can specify relevant dimensions.
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What background knowledge could be useful here?

Task-relevant data: what is the data set that I want to mine?

What kind of knowledge do I want to mine?

Which measurements can be used to estimate pattern interestingness?

How do I want the discovered patterns to be presented?

Figure 4.1: De�ning a data mining task or query.

relationships between, say, the items purchased, and customer annual income and age, then the attributes name

of the relation item, and income and age of the relation customer can be speci�ed as the relevant attributes
for mining. The portion of the database to be mined is called the minable view. A minable view can also be
sorted and/or grouped according to one or a set of attributes or dimensions.

2. the kinds of knowledge to be mined: This speci�es the data mining functions to be performed, such as
characterization, discrimination, association, classi�cation, clustering, or evolution analysis. For instance, if
studying the buying habits of customers in Canada, you may choose to mine associations between customer
pro�les and the items that these customers like to buy.

3. background knowledge: Users can specify background knowledge, or knowledge about the domain to be
mined. This knowledge is useful for guiding the knowledge discovery process, and for evaluating the patterns
found. There are several kinds of background knowledge. In this chapter, we focus our discussion on a popular
form of background knowledge known as concept hierarchies. Concept hierarchies are useful in that they allow
data to be mined at multiple levels of abstraction. Other examples include user beliefs regarding relationships
in the data. These can be used to evaluate the discovered patterns according to their degree of unexpectedness,
where unexpected patterns are deemed interesting.

4. interestingnessmeasures: These functions are used to separate uninteresting patterns from knowledge. They
may be used to guide the mining process, or after discovery, to evaluate the discovered patterns. Di�erent kinds

of knowledge may have di�erent interestingness measures. For example, interestingness measures for association
rules include support (the percentage of task-relevant data tuples for which the rule pattern appears), and
con�dence (the strength of the implication of the rule). Rules whose support and con�dence values are below
user-speci�ed thresholds are considered uninteresting.

5. presentation and visualization of discovered patterns: This refers to the form in which discovered
patterns are to be displayed. Users can choose from di�erent forms for knowledge presentation, such as rules,
tables, charts, graphs, decision trees, and cubes.

Below, we examine each of these primitives in greater detail. The speci�cation of these primitives is summarized
in Figure 4.2.

4.1.1 Task-relevant data

The �rst primitive is the speci�cation of the data on which mining is to be performed. Typically, a user is interested
in only a subset of the database. It is impractical to indiscriminately mine the entire database, particularly since the
number of patterns generated could be exponential with respect to the database size. Furthermore, many of these
patterns found would be irrelevant to the interests of the user.
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- database or data warehouse name

- database tables or data warehouse cubes

- conditions for data selection

- relevant attributes or dimensions

Task-relevant data

- data grouping criteria

Background knowledge

- concept hierarchies
- user beliefs about relationships in the data

- characterization

- discrimination

- association

- clustering

- classification/prediction

Pattern interestingness measurements

- simplicity

- certainty (e.g., confidence)

- novelty

- utility (e.g., support)

Visualization of discovered patterns

- drill-down and roll-up 

- rules, tables, reports, charts, graphs, decisison trees, and cubes

Knowledge type to be mined

Figure 4.2: Primitives for specifying a data mining task.
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In a relational database, the set of task-relevant data can be collected via a relational query involving operations
like selection, projection, join, and aggregation. This retrieval of data can be thought of as a \subtask" of the data
mining task. The data collection process results in a new data relation, called the initial data relation. The initial
data relation can be ordered or grouped according to the conditions speci�ed in the query. The data may be cleaned
or transformed (e.g., aggregated on certain attributes) prior to applying data mining analysis. The initial relation
may or may not correspond to a physical relation in the database. Since virtual relations are called views in the
�eld of databases, the set of task-relevant data for data mining is called a minable view.

Example 4.1 If the data mining task is to study associations between items frequently purchased at AllElectronics
by customers in Canada, the task-relevant data can be speci�ed by providing the following information:

� the name of the database or data warehouse to be used (e.g., AllElectronics db),

� the names of the tables or data cubes containing the relevant data (e.g., item, customer, purchases, and
items sold),

� conditions for selecting the relevant data (e.g., retrieve data pertaining to purchases made in Canada for the
current year),

� the relevant attributes or dimensions (e.g., name and price from the item table, and income and age from the
customer table).

In addition, the user may specify that the data retrieved be grouped by certain attributes, such as \group by date".
Given this information, an SQL query can be used to retrieve the task-relevant data. 2

In a data warehouse, data are typically stored in a multidimensional database, known as a data cube, which
can be implemented using a multidimensional array structure, a relational structure, or a combination of both, as
discussed in Chapter 2. The set of task-relevant data can be speci�ed by condition-based data �ltering, slicing
(extracting data for a given attribute value, or \slice"), or dicing (extracting the intersection of several slices) of the
data cube.

Notice that in a data mining query, the conditions provided for data selection can be at a level that is conceptually
higher than the data in the database or data warehouse. For example, a user may specify a selection on items at
AllElectronics using the concept \type = home entertainment", even though individual items in the database may
not be stored according to type, but rather, at a lower conceptual, such as \TV", \CD player", or \VCR". A concept
hierarchy on item which speci�es that \home entertainment" is at a higher concept level, composed of the lower level
concepts f\TV", \CD player", \VCR"g can be used in the collection of the task-relevant data.

The set of relevant attributes speci�ed may involve other attributes which were not explicitly mentioned, but
which should be included because they are implied by the concept hierarchy or dimensions involved in the set of
relevant attributes speci�ed. For example, a query-relevant set of attributes may contain city. This attribute,
however, may be part of other concept hierarchies such as the concept hierarchy street < city < province or state <

country for the dimension location. In this case, the attributes street, province or state, and country should also be
included in the set of relevant attributes since they represent lower or higher level abstractions of city. This facilitates
the mining of knowledge at multiple levels of abstraction by specialization (drill-down) and generalization (roll-up).

Speci�cation of the relevant attributes or dimensions can be a di�cult task for users. A user may have only a
rough idea of what the interesting attributes for exploration might be. Furthermore, when specifying the data to be
mined, the user may overlook additional relevant data having strong semantic links to them. For example, the sales
of certain items may be closely linked to particular events such as Christmas or Halloween, or to particular groups of
people, yet these factors may not be included in the general data analysis request. For such cases, mechanisms can
be used which help give a more precise speci�cation of the task-relevant data. These include functions to evaluate
and rank attributes according to their relevancy with respect to the operation speci�ed. In addition, techniques that
search for attributes with strong semantic ties can be used to enhance the initial dataset speci�ed by the user.

4.1.2 The kind of knowledge to be mined

It is important to specify the kind of knowledge to be mined, as this determines the data mining function to be
performed. The kinds of knowledge include concept description (characterization and discrimination), association,
classi�cation, prediction, clustering, and evolution analysis.
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In addition to specifying the kind of knowledge to be mined for a given data mining task, the user can be more
speci�c and provide pattern templates that all discovered patterns must match. These templates, or metapatterns

(also called metarules or metaqueries), can be used to guide the discovery process. The use of metapatterns is
illustrated in the following example.

Example 4.2 A user studying the buying habits of AllElectronics customers may choose to mine association rules

of the form
P (X : customer;W ) ^Q(X;Y ) ) buys(X;Z)

where X is a key of the customer relation, P and Q are predicate variables which can be instantiated to the
relevant attributes or dimensions speci�ed as part of the task-relevant data, and W , Y , and Z are object variables
which can take on the values of their respective predicates for customers X.

The search for association rules is con�ned to those matching the given metarule, such as

age(X; \30 39") ^ income(X; \40 50K") ) buys(X; \V CR") [2:2%; 60%] (4.1)

and

occupation(X; \student") ^ age(X; \20 29") ) buys(X; \computer") [1:4%; 70%]: (4.2)

The former rule states that customers in their thirties, with an annual income of between 40K and 50K, are likely
(with 60% con�dence) to purchase a VCR, and such cases represent about 2.2% of the total number of transactions.
The latter rule states that customers who are students and in their twenties are likely (with 70% con�dence) to
purchase a computer, and such cases represent about 1.4% of the total number of transactions. 2

4.1.3 Background knowledge: concept hierarchies

Background knowledge is information about the domain to be mined that can be useful in the discovery process.
In this section, we focus our attention on a simple yet powerful form of background knowledge known as concept
hierarchies. Concept hierarchies allow the discovery of knowledge at multiple levels of abstraction.

As described in Chapter 2, a concept hierarchy de�nes a sequence of mappings from a set of low level concepts
to higher level, more general concepts. A concept hierarchy for the dimension location is shown in Figure 4.3, mapping
low level concepts (i.e., cities) to more general concepts (i.e., countries).

Notice that this concept hierarchy is represented as a set of nodes organized in a tree, where each node, in
itself, represents a concept. A special node, all, is reserved for the root of the tree. It denotes the most generalized
value of the given dimension. If not explicitly shown, it is implied. This concept hierarchy consists of four levels.
By convention, levels within a concept hierarchy are numbered from top to bottom, starting with level 0 for the all

node. In our example, level 1 represents the concept country, while levels 2 and 3 respectively represent the concepts
province or state and city. The leaves of the hierarchy correspond to the dimension's raw data values (primitive

level data). These are the most speci�c values, or concepts, of the given attribute or dimension. Although a concept
hierarchy often de�nes a taxonomy represented in the shape of a tree, it may also be in the form of a general lattice
or partial order.

Concept hierarchies are a useful form of background knowledge in that they allow raw data to be handled at
higher, generalized levels of abstraction. Generalization of the data, or rolling up is achieved by replacing primitive
level data (such as city names for location, or numerical values for age) by higher level concepts (such as continents for
location, or ranges like \20-39", \40-59", \60+" for age). This allows the user to view the data at more meaningful

and explicit abstractions, and makes the discovered patterns easier to understand. Generalization has an added
advantage of compressing the data. Mining on a compressed data set will require fewer input/output operations and
be more e�cient than mining on a larger, uncompressed data set.

If the resulting data appear overgeneralized, concept hierarchies also allow specialization, or drilling down,
whereby concept values are replaced by lower level concepts. By rolling up and drilling down, users can view the
data from di�erent perspectives, gaining further insight into hidden data relationships.

Concept hierarchies can be provided by system users, domain experts, or knowledge engineers. The mappings
are typically data- or application-speci�c. Concept hierarchies can often be automatically discovered or dynamically
re�ned based on statistical analysis of the data distribution. The automatic generation of concept hierarchies is
discussed in detail in Chapter 3.
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Figure 4.3: A concept hierarchy for the dimension location.
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Figure 4.4: Another concept hierarchy for the dimension location, based on language.
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There may be more than one concept hierarchy for a given attribute or dimension, based on di�erent user
viewpoints. Suppose, for instance, that a regional sales manager of AllElectronics is interested in studying the
buying habits of customers at di�erent locations. The concept hierarchy for location of Figure 4.3 should be useful
for such a mining task. Suppose that a marketing manager must devise advertising campaigns for AllElectronics.
This user may prefer to see location organized with respect to linguistic lines (e.g., including English for Vancouver,
Montreal and New York; French for Montreal; Spanish for New York and Miami; and so on) in order to facilitate
the distribution of commercial ads. This alternative hierarchy for location is illustrated in Figure 4.4. Note that
this concept hierarchy forms a lattice, where the node \New York" has two parent nodes, namely \English" and
\Spanish".

There are four major types of concept hierarchies. Chapter 2 introduced the most common types | schema hier-

archies and set-grouping hierarchies, which we review here. In addition, we also study operation-derived hierarchies

and rule-based hierarchies.

1. A schema hierarchy (or more rigorously, a schema-de�ned hierarchy) is a total or partial order among
attributes in the database schema. Schema hierarchies may formally express existing semantic relationships
between attributes. Typically, a schema hierarchy speci�es a data warehouse dimension.

Example 4.3 Given the schema of a relation for address containing the attributes street, city, province or state,
and country, we can de�ne a location schema hierarchy by the following total order:

street < city < province or state < country

This means that street is at a conceptually lower level than city, which is lower than province or state, which
is conceptually lower than country. A schema hierarchy provides metadata information, i.e., data about the
data. Its speci�cation in terms of a total or partial order among attributes is more concise than an equivalent
de�nition that lists all instances of streets, provinces or states, and countries.

Recall that when specifying the task-relevant data, the user speci�es relevant attributes for exploration. If
a user had speci�ed only one attribute pertaining to location, say, city, other attributes pertaining to any
schema hierarchy containing city may automatically be considered relevant attributes as well. For instance,
the attributes street, province or state, and country may also be automatically included for exploration. 2

2. A set-grouping hierarchy organizes values for a given attribute or dimension into groups of constants or
range values. A total or partial order can be de�ned among groups. Set-grouping hierarchies can be used to
re�ne or enrich schema-de�ned hierarchies, when the two types of hierarchies are combined. They are typically
used for de�ning small sets of object relationships.

Example 4.4 A set-grouping hierarchy for the attribute age can be speci�ed in terms of ranges, as in the
following.

f20� 39g � young

f40� 59g � middle aged

f60� 89g � senior

fyoung, middle aged, seniorg � all(age)

Notice that similar range speci�cations can also be generated automatically, as detailed in Chapter 3. 2

Example 4.5 A set-grouping hierarchy may form a portion of a schema hierarchy, and vice versa. For example,
consider the concept hierarchy for location in Figure 4.3, de�ned as city < province or state < country. Suppose
that possible constant values for country include \Canada", \USA", \Germany", \England", and \Brazil". Set-
grouping may be used to re�ne this hierarchy by adding an additional level above country, such as continent,
which groups the country values accordingly. 2

3. Operation-derived hierarchies are based on operations speci�ed by users, experts, or the data mining
system. Operations can include the decoding of information-encoded strings, information extraction from
complex data objects, and data clustering.
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Example 4.6 An e-mail address or a URL of the WWW may contain hierarchy information relating de-
partments, universities (or companies), and countries. Decoding operations can be de�ned to extract such
information in order to form concept hierarchies.

For example, the e-mail address \dmbook@cs.sfu.ca" gives the partial order, \login-name < department < uni-

versity < country", forming a concept hierarchy for e-mail addresses. Similarly, the URL address \http://www.c
s.sfu.ca/research/DB/DBMiner" can be decoded so as to provide a partial order which forms the base of a con-
cept hierarchy for URLs. 2

Example 4.7 Operations can be de�ned to extract information from complex data objects. For example, the
string \Ph.D. in Computer Science, UCLA, 1995" is a complex object representing a university degree. This
string contains rich information about the type of academic degree, major, university, and the year that the
degree was awarded. Operations can be de�ned to extract such information, forming concept hierarchies. 2

Alternatively, mathematical and statistical operations, such as data clustering and data distribution analysis
algorithms, can be used to form concept hierarchies, as discussed in Section 3.5

4. A rule-based hierarchy occurs when either a whole concept hierarchy or a portion of it is de�ned by a set
of rules, and is evaluated dynamically based on the current database data and the rule de�nition.

Example 4.8 The following rules may be used to categorize AllElectronics items as low pro�t margin items,
medium pro�t margin items, and high pro�t margin items, where the pro�t margin of an item X is de�ned as
the di�erence between the retail price and actual cost of X. Items having a pro�t margin of less than $50
may be de�ned as low pro�t margin items, items earning a pro�t between $50 and $250 may be de�ned as
medium pro�t margin items, and items earning a pro�t of more than $250 may be de�ned as high pro�t margin

items.

low pro�t margin(X) ( price(X;P1) ^ cost(X;P2) ^ ((P1� P2) < $50)
medium pro�t margin(X) ( price(X;P1) ^ cost(X;P2) ^ ((P1� P2) > $50)^ ((P1� P2) � $250)
high pro�t margin(X) ( price(X;P1) ^ cost(X;P2) ^ ((P1� P2) > $250)

2

The use of concept hierarchies for data mining is described in the remaining chapters of this book.

4.1.4 Interestingness measures

Although speci�cation of the task-relevant data and of the kind of knowledge to be mined (e.g, characterization,

association, etc.) may substantially reduce the number of patterns generated, a data mining process may still generate
a large number of patterns. Typically, only a small fraction of these patterns will actually be of interest to the given
user. Thus, users need to further con�ne the number of uninteresting patterns returned by the process. This can
be achieved by specifying interestingness measures which estimate the simplicity, certainty, utility, and novelty of
patterns.

In this section, we study some objective measures of pattern interestingness. Such objective measures are based on
the structure of patterns and the statistics underlying them. In general, each measure is associated with a threshold

that can be controlled by the user. Rules that do not meet the threshold are considered uninteresting, and hence are
not presented to the user as knowledge.

� Simplicity. A factor contributing to the interestingness of a pattern is the pattern's overall simplicity for
human comprehension. Objective measures of pattern simplicity can be viewed as functions of the pattern
structure, de�ned in terms of the pattern size in bits, or the number of attributes or operators appearing in
the pattern. For example, the more complex the structure of a rule is, the more di�cult it is to interpret, and
hence, the less interesting it is likely to be.

Rule length, for instance, is a simplicity measure. For rules expressed in conjunctive normal form (i.e.,
as a set of conjunctive predicates), rule length is typically de�ned as the number of conjuncts in the rule.
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Association, discrimination, or classi�cation rules whose lengths exceed a user-de�ned threshold are considered
uninteresting. For patterns expressed as decision trees, simplicity may be a function of the number of tree
leaves or tree nodes.

� Certainty. Each discovered pattern should have a measure of certainty associated with it which assesses the
validity or \trustworthiness" of the pattern. A certainty measure for association rules of the form \A ) B," is
con�dence. Given a set of task-relevant data tuples (or transactions in a transaction database) the con�dence
of \A ) B" is de�ned as:

Con�dence(A ) B) = P (BjA) =
# tuples containing both A and B

# tuples containing A
: (4.3)

Example 4.9 Suppose that the set of task-relevant data consists of transactions from the computer department
of AllElectronics. A con�dence of 85% for the association rule

buys(X; \computer") ) buys(X; \software") (4.4)

means that 85% of all customers who purchased a computer also bought software. 2

A con�dence value of 100%, or 1, indicates that the rule is always correct on the data analyzed. Such rules are
called exact.

For classi�cation rules, con�dence is referred to as reliability or accuracy. Classi�cation rules propose a
model for distinguishing objects, or tuples, of a target class (say, bigSpenders) from objects of contrasting
classes (say, budgetSpenders). A low reliability value indicates that the rule in question incorrectly classi�es
a large number of contrasting class objects as target class objects. Rule reliability is also known as rule
strength, rule quality, certainty factor, and discriminating weight.

� Utility. The potential usefulness of a pattern is a factor de�ning its interestingness. It can be estimated
by a utility function, such as support. The support of an association pattern refers to the percentage of
task-relevant data tuples (or transactions) for which the pattern is true. For association rules of the form
\A ) B", it is de�ned as

Support(A ) B) = P (A [B) =
# tuples containing both A and B

total # of tuples
: (4.5)

Example 4.10 Suppose that the set of task-relevant data consists of transactions from the computer depart-
ment of AllElectronics. A support of 30% for the association rule (4.4) means that 30% of all customers in the

computer department purchased both a computer and software. 2

Association rules that satisfy both a user-speci�ed minimum con�dence threshold and user-speci�ed minimum

support threshold are referred to as strong association rules, and are considered interesting. Rules with low
support likely represent noise, or rare or exceptional cases.

The numerator of the support equation is also known as the rule count. Quite often, this number is displayed
instead of support. Support can easily be derived from it.

Characteristic and discriminant descriptions are, in essence, generalized tuples. Any generalized tuple rep-
resenting less than Y% of the total number of task-relevant tuples is considered noise. Such tuples are not
displayed to the user. The value of Y is referred to as the noise threshold.

� Novelty. Novel patterns are those that contribute new information or increased performance to the given
pattern set. For example, a data exception may be considered novel in that it di�ers from that expected based
on a statistical model or user beliefs. Another strategy for detecting novelty is to remove redundant patterns.
If a discovered rule can be implied by another rule that is already in the knowledge base or in the derived rule
set, then either rule should be re-examined in order to remove the potential redundancy.
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Mining with concept hierarchies can result in a large number of redundant rules. For example, suppose that
the following association rules were mined from the AllElectronics database, using the concept hierarchy in
Figure 4.3 for location:

location(X; \Canada") ) buys(X; \SONY TV ") [8%; 70%] (4.6)

location(X; \Montreal") ) buys(X; \SONY TV ") [2%; 71%] (4.7)

Suppose that Rule (4.6) has 8% support and 70% con�dence. One may expect Rule (4.7) to have a con�dence
of around 70% as well, since all the tuples representing data objects for Montreal are also data objects for
Canada. Rule (4.6) is more general than Rule (4.7), and therefore, we would expect the former rule to occur
more frequently than the latter. Consequently, the two rules should not have the same support. Suppose that
about one quarter of all sales in Canada comes from Montreal. We would then expect the support of the rule
involving Montreal to be one quarter of the support of the rule involving Canada. In other words, we expect
the support of Rule (4.7) to be 8%� 1

4
= 2%. If the actual con�dence and support of Rule (4.7) are as expected,

then the rule is considered redundant since it does not o�er any additional information and is less general than
Rule (4.6). These ideas are further discussed in Chapter 6 on association rule mining.

The above example also illustrates that when mining knowledge at multiple levels, it is reasonable to have
di�erent support and con�dence thresholds, depending on the degree of granularity of the knowledge in the
discovered pattern. For instance, since patterns are likely to be more scattered at lower levels than at higher
ones, we may set the minimum support threshold for rules containing low level concepts to be lower than that
for rules containing higher level concepts.

Data mining systems should allow users to exibly and interactively specify, test, and modify interestingness
measures and their respective thresholds. There are many other objective measures, apart from the basic ones
studied above. Subjective measures exist as well, which consider user beliefs regarding relationships in the data, in
addition to objective statistical measures. Interestingness measures are discussed in greater detail throughout the
book, with respect to the mining of characteristic, association, and classi�cation rules, and deviation patterns.

4.1.5 Presentation and visualization of discovered patterns

For data mining to be e�ective, data mining systems should be able to display the discovered patterns in multiple
forms, such as rules, tables, crosstabs, pie or bar charts, decision trees, cubes, or other visual representations (Figure
4.5). Allowing the visualization of discovered patterns in various forms can help users with di�erent backgrounds to
identify patterns of interest and to interact or guide the system in further discovery. A user should be able to specify
the kinds of presentation to be used for displaying the discovered patterns.

The use of concept hierarchies plays an important role in aiding the user to visualize the discovered patterns.
Mining with concept hierarchies allows the representation of discovered knowledge in high level concepts, which may
be more understandable to users than rules expressed in terms of primitive (i.e., raw) data, such as functional or
multivalued dependency rules, or integrity constraints. Furthermore, data mining systems should employ concept
hierarchies to implement drill-down and roll-up operations, so that users may inspect discovered patterns at multiple
levels of abstraction. In addition, pivoting (or rotating), slicing, and dicing operations aid the user in viewing
generalized data and knowledge from di�erent perspectives. These operations were discussed in detail in Chapter 2.
A data mining system should provide such interactive operations for any dimension, as well as for individual values
of each dimension.

Some representation forms may be better suited than others for particular kinds of knowledge. For example,
generalized relations and their corresponding crosstabs (cross-tabulations) or pie/bar charts are good for presenting
characteristic descriptions, whereas decision trees are a common choice for classi�cation. Interestingness measures
should be displayed for each discovered pattern, in order to help users identify those patterns representing useful
knowledge. These include con�dence, support, and count, as described in Section 4.1.4.

4.2 A data mining query language

Why is it important to have a data mining query language? Well, recall that a desired feature of data mining
systems is the ability to support ad-hoc and interactive data mining in order to facilitate exible and e�ective
knowledge discovery. Data mining query languages can be designed to support such a feature.
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Figure 4.5: Various forms of presenting and visualizing the discovered patterns.

The importance of the design of a good data mining query language can also be seen from observing the history
of relational database systems. Relational database systems have dominated the database market for decades. The
standardization of relational query languages, which occurred at the early stages of relational database development,
is widely credited for the success of the relational database �eld. Although each commercial relational database
system has its own graphical user interace, the underlying core of each interface is a standardized relational query
language. The standardization of relational query languages provided a foundation on which relational systems were
developed, and evolved. It facilitated information exchange and technology transfer, and promoted commercialization
and wide acceptance of relational database technology. The recent standardization activities in database systems,
such as work relating to SQL-3, OMG, and ODMG, further illustrate the importance of having a standard database
language for success in the development and commercialization of database systems. Hence, having a good query
language for data mining may help standardize the development of platforms for data mining systems.

Designing a comprehensive data mining language is challenging because data mining covers a wide spectrum of
tasks, from data characterization to mining association rules, data classi�cation, and evolution analysis. Each task

has di�erent requirements. The design of an e�ective data mining query language requires a deep understanding of
the power, limitation, and underlying mechanisms of the various kinds of data mining tasks.

How would you design a data mining query language? Earlier in this chapter, we looked at primitives for de�ning
a data mining task in the form of a data mining query. The primitives specify:

� the set of task-relevant data to be mined,

� the kind of knowledge to be mined,

� the background knowledge to be used in the discovery process,

� the interestingness measures and thresholds for pattern evaluation, and

� the expected representation for visualizing the discovered patterns.

Based on these primitives, we design a query language for data mining called DMQL which stands for Data
Mining Query Language. DMQL allows the ad-hoc mining of several kinds of knowledge from relational databases
and data warehouses at multiple levels of abstraction 2.

2DMQL syntax for de�ning data warehouses and data marts is given in Chapter 2.
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hDMQLi ::= hDMQL Statementi; fhDMQL Statementig
hDMQL Statementi ::= hData Mining Statmenti

j hConcept Hierarchy De�nition Statementi
j hVisualization and Presentationi

hData Mining Statementi ::=
use database hdatabase namei j use data warehouse hdata warehouse namei
fuse hierarchy hhierarchy namei for hattribute or dimensionig
hMine Knowledge Speci�cationi
in relevance to hattribute or dimension listi
from hrelation(s)/cubei
[where hconditioni]
[order by horder listi]
[group by hgrouping listi]
[having hconditioni]
fwith [hinterest measure namei] threshold = hthreshold valuei [for hattribute(s)i]g...

hMine Knowledge Speci�cationi::= hMine Chari j hMine Discri j hMine Associ j hMine Classi j hMine Predi
hMine Chari ::= mine characteristics [as hpattern namei]

analyze hmeasure(s)i
hMine Discri ::= mine comparison [as hpattern namei]

for htarget classi where htarget conditioni
fversus hcontrast class ii where hcontrast condition iig

analyze hmeasure(s)i
hMine Associ ::= mine associations [as hpattern namei]

[matching hmetapatterni]
hMine Classi ::= mine classi�cation [as hpattern namei]

analyze hclassifying attribute or dimensioni
hMine Predi ::= mine prediction [as hpattern namei]

analyze hprediction attribute or dimensioni
fset fhattribute or dimension ii= hvalue iigg

hConcept Hierarchy De�ntion Statementi ::=
de�ne hierarchy hhierarchy namei
[for hattribute or dimensioni]
on hrelation or cube or hierarchyi
as hhierarchy descriptioni
[where hconditioni]

hVisualization and Presentationi ::=
display as hresult formi
j roll up on hattribute or dimension i
j drill down on hattribute or dimensioni
j add hattribute or dimensioni
j drop hattribute or dimensioni

Figure 4.6: Top-level syntax of a data mining query language, DMQL.
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The language adopts an SQL-like syntax, so that it can easily be integrated with the relational query language,
SQL. The syntax of DMQL is de�ned in an extended BNF grammar, where \[ ]" represents 0 or one occurrence,
\f g" represents 0 or more occurrences, and words in sans serif font represent keywords.

In Sections 4.2.1 to 4.2.5, we develop DMQL syntax for each of the data mining primitives. In Section 4.2.6, we
show an example data mining query, speci�ed in the proposed syntax. A top-level summary of the language is shown
in Figure 4.6.

4.2.1 Syntax for task-relevant data speci�cation

The �rst step in de�ning a data mining task is the speci�cation of the task-relevant data, i.e., the data on which
mining is to be performed. This involves specifying the database and tables or data warehouse containing the
relevant data, conditions for selecting the relevant data, the relevant attributes or dimensions for exploration, and
instructions regarding the ordering or grouping of the data retrieved. DMQL provides clauses for the speci�cation
of such information, as follows.

� use database hdatabase namei, or use data warehouse hdata warehouse namei: The use clause directs the mining
task to the database or data warehouse speci�ed.

� from hrelation(s)/cube(s)i [where hconditioni]: The from and where clauses respectively specify the database
tables or data cubes involved, and the conditions de�ning the data to be retrieved.

� in relevance to hatt or dim listi: This clause lists the attributes or dimensions for exploration.

� order by horder listi: The order by clause speci�es the sorting order of the task-relevant data.

� group by hgrouping listi: The group by clause speci�es criteria for grouping the data.

� having hconditioni: The having clause speci�es the condition by which groups of data are considered relevant.

These clauses form an SQL query to collect the task-relevant data.

Example 4.11 This example shows how to use DMQL to specify the task-relevant data described in Example 4.1
for the mining of associations between items frequently purchased at AllElectronics by Canadian customers, with
respect to customer income and age. In addition, the user speci�es that she would like the data to be grouped by
date. The data are retrieved from a relational database.

use database AllElectronics db
in relevance to I.name, I.price, C.income, C.age
from customer C, item I, purchases P, items sold S
where I.item ID = S.item ID and S.trans ID = P.trans ID and P.cust ID = C.cust ID

and C.address = \Canada"
group by P.date

2

4.2.2 Syntax for specifying the kind of knowledge to be mined

The hMine Knowledge Speci�cationi statement is used to specify the kind of knowledge to be mined. In other
words, it indicates the data mining functionality to be performed. Its syntax is de�ned below for characterization,
discrimination, association, classi�cation, and prediction.

1. Characterization.

hMine Knowledge Speci�cationi ::=
mine characteristics [as hpattern namei]
analyze hmeasure(s)i
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This speci�es that characteristic descriptions are to be mined. The analyze clause, when used for characteri-
zation, speci�es aggregate measures, such as count, sum, or count% (percentage count, i.e., the percentage of
tuples in the relevant data set with the speci�ed characteristics). These measures are to be computed for each
data characteristic found.

Example 4.12 The following speci�es that the kind of knowledge to be mined is a characteristic description
describing customer purchasing habits. For each characteristic, the percentage of task-relevant tuples satisfying
that characteristic is to be displayed.

mine characteristics as customerPurchasing
analyze count%

2

2. Discrimination.

hMine Knowledge Speci�cationi ::=
mine comparison [as hpattern namei]
for htarget classi where htarget conditioni
fversus hcontrast class ii where hcontrast condition iig

analyze hmeasure(s)i

This speci�es that discriminant descriptions are to be mined. These descriptions compare a given target class of
objects with one or more other contrasting classes. Hence, this kind of knowledge is referred to as a comparison.
As for characterization, the analyze clause speci�es aggregate measures, such as count, sum, or count%, to be
computed and displayed for each description.

Example 4.13 The user may de�ne categories of customers, and then mine descriptions of each category. For
instance, a user may de�ne bigSpenders as customers who purchase items that cost $100 or more on average,
and budgetSpenders as customers who purchase items at less than $100 on average. The mining of discriminant
descriptions for customers from each of these categories can be speci�ed in DMQL as shown below, where I

refers to the item relation. The count of task-relevant tuples satisfying each description is to be displayed.

mine comparison as purchaseGroups
for bigSpenders where avg(I.price) � $100
versus budgetSpenders where avg(I.price) < $100
analyze count

2

3. Association.

hMine Knowledge Speci�cationi ::=
mine associations [as hpattern namei]
[matching hmetapatterni]

This speci�es the mining of patterns of association. When specifying association mining, the user has the option
of providing templates (also known as metapatterns or metarules) with the matching clause. The metapatterns
can be used to focus the discovery towards the patterns that match the given metapatterns, thereby enforcing
additional syntactic constraints for the mining task. In addition to providing syntactic constraints, the metap-
atterns represent data hunches or hypotheses that the user �nds interesting for investigation. Mining with the
use of metapatterns, or metarule-guided mining, allows additional exibility for ad-hoc rule mining. While
metapatterns may be used in the mining of other forms of knowledge, they are most useful for association
mining due to the vast number of potentially generated associations.
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Example 4.14 The metapattern of Example 4.2 can be speci�ed as follows to guide the mining of association
rules describing customer buying habits.

mine associations as buyingHabits
matching P (X : customer;W ) ^Q(X;Y ) ) buys(X;Z)

2

4. Classi�cation.

hMine Knowledge Speci�cationi ::=
mine classi�cation [as hpattern namei]
analyze hclassifying attribute or dimensioni

This speci�es that patterns for data classi�cation are to be mined. The analyze clause speci�es that the classi-
�cation is performed according to the values of hclassifying attribute or dimensioni. For categorical attributes
or dimensions, typically each value represents a class (such as \Vancouver", \New York", \Chicago", and so
on for the dimension location). For numeric attributes or dimensions, each class may be de�ned by a range
of values (such as \20-39", \40-59", \60-89" for age). Classi�cation provides a concise framework which best
describes the objects in each class and distinguishes them from other classes.

Example 4.15 To mine patterns classifying customer credit rating where credit rating is determined by the
attribute credit info, the following DMQL speci�cation is used:

mine classi�cation as classifyCustomerCreditRating
analyze credit info

2

5. Prediction.

hMine Knowledge Speci�cationi ::=
mine prediction [as hpattern namei]
analyze hprediction attribute or dimensioni
fset fhattribute or dimension ii= hvalue iigg

This DMQL syntax is for prediction. It speci�es the mining of missing or unknown continuous data values,
or of the data distribution, for the attribute or dimension speci�ed in the analyze clause. A predictive model
is constructed based on the analysis of the values of the other attributes or dimensions describing the data
objects (tuples). The set clause can be used to �x the values of these other attributes.

Example 4.16 To predict the retail price of a new item at AllElectronics, the following DMQL speci�cation
is used:

mine prediction as predictItemPrice
analyze price
set category = \TV" and brand = \SONY"

The set clause speci�es that the resulting predictive patterns regarding price are for the subset of task-relevant
data relating to SONY TV's. If no set clause is speci�ed, then the prediction returned would be a data
distribution for all categories and brands of AllElectronics items in the task-relevant data. 2

The data mining language should also allow the speci�cation of other kinds of knowledge to be mined, in addition
to those shown above. These include the miningof data clusters, evolution rules or sequential patterns, and deviations.
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4.2.3 Syntax for concept hierarchy speci�cation

Concept hierarchies allow the mining of knowledge at multiple levels of abstraction. In order to accommodate the
di�erent viewpoints of users with regards to the data, there may be more than one concept hierarchy per attribute
or dimension. For instance, some users may prefer to organize branch locations by provinces and states, while others
may prefer to organize them according to languages used. In such cases, a user can indicate which concept hierarchy
is to be used with the statement

use hierarchy hhierarchyi for hattribute or dimensioni.

Otherwise, a default hierarchy per attribute or dimension is used.

How can we de�ne concept hierarchies, using DMQL? In Section 4.1.3, we studied four types of concept hierarchies,
namely schema, set-grouping, operation-derived, and rule-based hierarchies. Let's look at the following syntax for
de�ning each of these hierarchy types.

1. De�nition of schema hierarchies.

Example 4.17 Earlier, we de�ned a schema hierarchy for a relation address as the total order street < city <

province or state < country. This can be de�ned in the data mining query language as:

de�ne hierarchy location hierarchy on address as [street, city, province or state, country]

The ordering of the listed attributes is important. In fact, a total order is de�ned which speci�es that street
is conceptually one level lower than city, which is in turn conceptually one level lower than province or state,
and so on. 2

Example 4.18 A data mining system will typically have a prede�ned concept hierarchy for the schema date
(day, month, quarter, year), such as:

de�ne hierarchy time hierarchy on date as [day, month, quarter, year]

2

Example 4.19 Concept hierarchy de�nitions can involve several relations. For example, an item hierarchy

may involve two relations, item and supplier, de�ned by the following schema.

item(item ID; brand; type; place made; supplier)
supplier(name; type; headquarter location; owner; size; assets; revenue)

The hierarchy item hierarchy can be de�ned as follows:

de�ne hierarchy item hierarchy on item, supplier as

[item ID, brand, item.supplier, item.type, supplier.type]
where item.supplier = supplier.name

If the concept hierarchy de�nition contains an attribute name that is shared by two relations, then the attribute
is pre�xed by its relation name, using the same dot (\.") notation as in SQL (e.g., item.supplier). The join
condition of the two relations is speci�ed by a where clause. 2

2. De�nition of set-grouping hierarchies.

Example 4.20 The set-grouping hierarchy for age of Example 4.4 can be de�ned in terms of ranges as follows:

de�ne hierarchy age hierarchy for age on customer as

level1: fyoung, middle aged, seniorg < level0: all
level2: f20, . . . , 39g < level1: young
level2: f40, . . . , 59g < level1: middle aged

level2: f60, . . . , 89g < level1: senior
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20,...,39 40,...59 60,...89

all

middle_aged

level  0
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level 2

Figure 4.7: A concept hierarchy for the attribute age.

The notation \. . . " implicitly speci�es all the possible values within the given range. For example, \f20, . . . ,
39g" includes all integers within the range of the endpoints, 20 and 39. Ranges may also be speci�ed with real
numbers as endpoints. The corresponding concept hierarchy is shown in Figure 4.7. The most general concept
for age is all, and is placed at the root of the hierarchy. By convention, the all value is always at level 0 of
any hierarchy. The all node in Figure 4.7 has three child nodes, representing more speci�c abstractions of age,
namely young, middle aged, and senior. These are at level 1 of the hierarchy. The age ranges for each of these
level 1 concepts are de�ned at level 2 of the hierarchy. 2

Example 4.21 The schema hierarchy in Example 4.17 for location can be re�ned by adding an additional
concept level, continent.

de�ne hierarchy on location hierarchy as

country: fCanada, USA, Mexicog < continent: NorthAmerica

country: fEngland, France, Germany, Italyg < continent: Europe

...

continent: fNorthAmerica, Europe, Asiag < all

By listing the countries (for which AllElectronics sells merchandise) belonging to each continent, we build an
additional concept layer on top of the schema hierarchy of Example 4.17. 2

3. De�nition of operation-derived hierarchies

Example 4.22 As an alternative to the set-grouping hierarchy for age in Example 4.20, a user may wish to
de�ne an operation-derived hierarchy for age based on data clustering routines. This is especially useful when

the values of a given attribute are not uniformly distributed. A hierarchy for age based on clustering can be
de�ned with the following statement:

de�ne hierarchy age hierarchy for age on customer as

fage category(1), . . . , age category(5)g := cluster(default, age, 5) < all(age)

This statement indicates that a default clustering algorithm is to be performed on all of the age values in
the relation customer in order to form �ve clusters. The clusters are ranges with names explicitly de�ned as
\age category(1), . . . , age category(5)", organized in ascending order. 2

4. De�nition of rule-based hierarchies

Example 4.23 A concept hierarchy can be de�ned based on a set of rules. Consider the concept hierarchy of
Example 4.8 for items at AllElectronics. This hierarchy is based on item pro�t margins, where the pro�t margin
of an item is de�ned as the di�erence between the retail price of the item, and the cost incurred by AllElectronics
to purchase the item for sale. The hierarchy organizes items into low pro�t margin items,medium-pro�t margin

items, and high pro�t margin items, and is de�ned in DMQL by the following set of rules.
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de�ne hierarchy pro�t margin hierarchy on item as

level 1: low pro�t margin < level 0: all

if (price� cost) < $50
level 1: medium-pro�t margin < level 0: all

if ((price� cost) > $50) and ((price� cost) � $250))
level 1: high pro�t margin < level 0: all

if (price� cost) > $250

2

4.2.4 Syntax for interestingness measure speci�cation

The user can control the number of uninteresting patterns returned by the data mining system by specifying mea-
sures of pattern interestingness and their corresponding thresholds. Interestingness measures include the con�dence,
support, noise, and novelty measures described in Section 4.1.4. Interestingness measures and thresholds can be
speci�ed by the user with the statement:

with [hinterest measure namei] threshold = hthreshold valuei

Example 4.24 In mining association rules, a user can con�ne the rules to be found by specifying a minimumsupport
and minimum con�dence threshold of 0.05 and 0.7, respectively, with the statements:

with support threshold = 0.05
with con�dence threshold = 0.7

2

The interestingness measures and threshold values can be set and modi�ed interactively.

4.2.5 Syntax for pattern presentation and visualization speci�cation

How can users specify the forms of presentation and visualization to be used in displaying the discovered patterns?
Our data mining query language needs syntax which allows users to specify the display of discovered patterns in
one or more forms, including rules, tables, crosstabs, pie or bar charts, decision trees, cubes, curves, or surfaces. We
de�ne the DMQL display statement for this purpose:

display as hresult formi

where the hresult formi could be any of the knowledge presentation or visualization forms listed above.

Interactive mining should allow the discovered patterns to be viewed at di�erent concept levels or from di�erent

angles. This can be accomplished with roll-up and drill-down operations, as described in Chapter 2. Patterns can
be rolled-up, or viewed at a more general level, by climbing up the concept hierarchy of an attribute or dimension
(replacing lower level concept values by higher level values). Generalization can also be performed by dropping
attributes or dimensions. For example, suppose that a pattern contains the attribute city. Given the location

hierarchy city < province or state < country < continent, then dropping the attribute city from the patterns will
generalize the data to the next lowest level attribute, province or state. Patterns can be drilled-down on, or viewed
at a less general level, by stepping down the concept hierarchy of an attribute or dimension. Patterns can also be
made less general by adding attributes or dimensions to their description. The attribute added must be one of the
attributes listed in the in relevance to clause for task-relevant speci�cation. The user can alternately view the patterns
at di�erent levels of abstractions with the use of the following DMQL syntax:

hMultilevel Manipulationi ::= roll up on hattribute or dimensioni
j drill down on hattribute or dimensioni
j add hattribute or dimensioni
j drop hattribute or dimensioni

Example 4.25 Suppose descriptions are mined based on the dimensions location, age, and income. One may \roll
up on location" or \drop age" to generalize the discovered patterns. 2
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age type place made count%

30-39 home security system USA 19
40-49 home security system USA 15
20-29 CD player Japan 26
30-39 CD player USA 13
40-49 large screen TV Japan 8
. . . . . . . . . . . .

100%

Figure 4.8: Characteristic descriptions in the form of a table, or generalized relation.

4.2.6 Putting it all together | an example of a DMQL query

In the above discussion, we presented DMQL syntax for specifying data mining queries in terms of the �ve data
mining primitives. For a given query, these primitives de�ne the task-relevant data, the kind of knowledge to be
mined, the concept hierarchies and interestingness measures to be used, and the representation forms for pattern
visualization. Here we put these components together. Let's look at an example for the full speci�cation of a DMQL
query.

Example 4.26 Mining characteristic descriptions. Suppose, as a marketing manager of AllElectronics, you
would like to characterize the buying habits of customers who purchase items priced at no less than $100, with respect
to the customer's age, the type of item purchased, and the place in which the item was made. For each characteristic
discovered, you would like to know the percentage of customers having that characteristic. In particular, you are
only interested in purchases made in Canada, and paid for with an American Express (\AmEx") credit card. You
would like to view the resulting descriptions in the form of a table. This data mining query is expressed in DMQL
as follows.

use database AllElectronics db
use hierarchy location hierarchy for B.address
mine characteristics as customerPurchasing
analyze count%
in relevance to C.age, I.type, I.place made
from customer C, item I, purchases P, items sold S, works at W, branch B
where I.item ID = S.item ID and S.trans ID = P.trans ID and P.cust ID = C.cust ID

and P.method paid = \AmEx" and P.empl ID = W.empl ID and W.branch ID = B.branch ID

and B.address = \Canada" and I.price � 100
with noise threshold = 0.05
display as table

The data mining query is parsed to form an SQL query which retrieves the set of task-relevant data from the
AllElectronics database. The concept hierarchy location hierarchy, corresponding to the concept hierarchy of Figure
4.3 is used to generalize branch locations to high level concept levels such as \Canada". An algorithm for mining
characteristic rules, which uses the generalized data, can then be executed. Algorithms for mining characteristic
rules are introduced in Chapter 5. The mined characteristic descriptions, derived from the attributes age, type and
place made, are displayed as a table, or generalized relation (Figure 4.8). The percentage of task-relevant tuples
satisfying each generalized tuple is shown as count%. If no visualization form is speci�ed, a default form is used. The
noise threshold of 0.05 means any generalized tuple found that represents less than 5% of the total count is omitted
from display. 2

Similarly, the complete DMQL speci�cation of data mining queries for discrimination, association, classi�cation,
and prediction can be given. Example queries are presented in the following chapters which respectively study the
mining of these kinds of knowledge.
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4.3 Designing graphical user interfaces based on a data mining query language

A data mining query language provides necessary primitives which allow users to communicate with data mining
systems. However, inexperienced users may �nd data mining query languages awkward to use, and the syntax
di�cult to remember. Instead, users may prefer to communicate with data mining systems through a Graphical User
Interface (GUI). In relational database technology, SQL serves as a standard \core" language for relational systems,
on top of which GUIs can easily be designed. Similarly, a data mining query language may serve as a \core language"
for data mining system implementations, providing a basis for the development of GUI's for e�ective data mining.

A data mining GUI may consist of the following functional components.

1. Data collection and data mining query composition: This component allows the user to specify task-
relevant data sets, and to compose data mining queries. It is similar to GUIs used for the speci�cation of
relational queries.

2. Presentation of discovered patterns: This component allows the display of the discovered patterns in
various forms, including tables, graphs, charts, curves, or other visualization techniques.

3. Hierarchy speci�cation and manipulation: This component allows for concept hierarchy speci�cation,
either manually by the user, or automatically (based on analysis of the data at hand). In addition, this
component should allow concept hierarchies to be modi�ed by the user, or adjusted automatically based on a
given data set distribution.

4. Manipulation of data mining primitives: This component may allow the dynamic adjustment of data
mining thresholds, as well as the selection, display, and modi�cation of concept hierarchies. It may also allow
the modi�cation of previous data mining queries or conditions.

5. Interactive multilevel mining: This component should allow roll-up or drill-down operations on discovered
patterns.

6. Other miscellaneous information: This component may include on-line help manuals, indexed search,
debugging, and other interactive graphical facilities.

Do you think that data mining query languages may evolve to form a standard for designing data mining GUIs?
If such an evolution is possible, the standard would facilitate data mining software development and system commu-
nication. Some GUI primitives, such as pointing to a particular point in a curve or graph, however, are di�cult to
specify using a text-based data mining query language like DMQL. Alternatively, a standardized GUI-based language
may evolve and replace SQL-like data mining languages. Only time will tell.

4.4 Summary

� We have studied �ve primitives for specifying a data mining task in the form of a data mining query. These
primitives are the speci�cation of task-relevant data (i.e., the data set to be mined), the kind of knowledge to
be mined (e.g., characterization, discrimination, association, classi�cation, or prediction), background knowl-
edge (typically in the form of concept hierarchies), interestingness measures, and knowledge presentation and
visualization techniques to be used for displaying the discovered patterns.

� In de�ning the task-relevant data, the user speci�es the database and tables (or data warehouse and data
cubes) containing the data to be mined, conditions for selecting and grouping such data, and the attributes (or
dimensions) to be considered during mining.

� Concept hierarchies provide useful background knowledge for expressing discovered patterns in concise, high
level terms, and facilitate the mining of knowledge at multiple levels of abstraction.

� Measures of pattern interestingness assess the simplicity, certainty, utility, or novelty of discovered patterns.
Such measures can be used to help reduce the number of uninteresting patterns returned to the user.



4.4. SUMMARY 23

� Users should be able to specify the desired form for visualizing the discovered patterns, such as rules, tables,
charts, decision trees, cubes, graphs, or reports. Roll-up and drill-down operations should also be available for
the inspection of patterns at multiple levels of abstraction.

� Data mining query languages can be designed to support ad-hoc and interactive data mining. A data
mining query language, such as DMQL, should provide commands for specifying each of the data mining
primitives, as well as for concept hierarchy generation and manipulation. Such query languages are SQL-based,
and may eventually form a standard on which graphical user interfaces for data mining can be based.

Exercises

1. List and describe the �ve primitives for specifying a data mining task.

2. Suppose that the university course database for Big-University contains the following attributes: the name,
address, status (e.g., undergraduate or graduate), and major of each student, and their cumulative grade point
average (GPA).

(a) Propose a concept hierarchy for the attributes status, major, GPA, and address.

(b) For each concept hierarchy that you have proposed above, what type of concept hierarchy have you
proposed?

(c) De�ne each hierarchy using DMQL syntax.

(d) Write a DMQL query to �nd the characteristics of students who have an excellent GPA.

(e) Write a DMQL query to compare students majoring in science with students majoring in arts.

(f) Write a DMQL query to �nd associations involving course instructors, student grades, and some other
attribute of your choice. Use a metarule to specify the format of associations you would like to �nd.
Specify minimum thresholds for the con�dence and support of the association rules reported.

(g) Write a DMQL query to predict student grades in \Computing Science 101" based on student GPA to
date and course instructor

3. Consider association rule 4.8 below, which was mined from the student database at Big-University.

major(X; \science") ) status(X; \undergrad"): (4.8)

Suppose that the number of students at the university (that is, the number of task-relevant data tuples) is
5000, that 56% of undergraduates at the university major in science, that 64% of the students are registered
in programs leading to undergraduate degrees, and that 70% of the students are majoring in science.

(a) Compute the con�dence and support of Rule (4.8).

(b) Consider Rule (4.9) below.

major(X; \biology") ) status(X; \undergrad") [17%; 80%] (4.9)

Suppose that 30% of science students are majoring in biology. Would you consider Rule (4.9) to be novel
with respect to Rule (4.8)? Explain.

4. The hMine Knowledge Speci�cationi statement can be used to specify the mining of characteristic, discriminant,
association, classi�cation, and prediction rules. Propose a syntax for the mining of clusters.

5. Rather than requiring users to manually specify concept hierarchy de�nitions, some data mining systems can
generate or modify concept hierarchies automatically based on the analysis of data distributions.

(a) Propose concise DMQL syntax for the automatic generation of concept hierarchies.

(b) A concept hierarchy may be automatically adjusted to reect changes in the data. Propose concise DMQL
syntax for the automatic adjustment of concept hierarchies.
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(c) Give examples of your proposed syntax.

6. In addition to concept hierarchy creation, DMQL should also provide syntax which allows users to modify
previously de�ned hierarchies. This syntax should allow the insertion of new nodes, the deletion of nodes, and
the moving of nodes within the hierarchy.

� To insert a new node N into level L of a hierarchy, one should specify its parent node P in the hierarchy,
unless N is at the topmost layer.

� To delete node N from a hierarchy, all of its descendent nodes should be removed from the hierarchy as
well.

� To move a node N to a di�erent location within the hierarchy, the parent of N will change, and all of the
descendents of N should be moved accordingly.

(a) Propose DMQL syntax for each of the above operations.

(b) Show examples of your proposed syntax.

(c) For each operation, illustrate the operation by drawing the corresponding concept hierarchies (\before"
and \after").

Bibliographic Notes

A number of objective interestingness measures have been proposed in the literature. Simplicity measures are given
in Michalski [23]. The con�dence and support measures for association rule interestingness described in this chapter
were proposed in Agrawal, Imielinski, and Swami [1]. The strategy we described for identifying redundant multilevel
association rules was proposed in Srikant and Agrawal [31, 32]. Other objective interestingness measures have been
presented in [1, 6, 12, 17, 27, 19, 30]. Subjective measures of interestingness, which consider user beliefs regarding
relationships in the data, are discussed in [18, 21, 20, 26, 29].

The DMQL data mining query language was proposed by Han et al. [11] for the DBMiner data mining system.
Discovery Board (formerly Data Mine) was proposed by Imielinski, Virmani, and Abdulghani [13] as an application
development interface prototype involving an SQL-based operator for data mining query speci�cation and rule
retrieval. An SQL-like operator for mining single-dimensional association rules was proposed by Meo, Psaila, and
Ceri [22], and extended by Baralis and Psaila [4]. Mining with metarules is described in Klemettinen et al. [16],
Fu and Han [9], Shen et al. [28], and Kamber et al. [14]. Other ideas involving the use of templates or predicate
constraints in mining have been discussed in [3, 7, 18, 29, 33, 25].

For a comprehensive survey of visualization techniques, see Visual Techniques for Exploring Databases by Keim
[15].
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