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Chapter 3

Data Preprocessing

September 7, 1999

Today's real-world databases are highly susceptible to noise, missing, and inconsistent data due to their typically
huge size, often several gigabytes or more. How can the data be preprocessed in order to help improve the quality of
the data, and consequently, of the mining results? How can the data be preprocessed so as to improve the e�ciency
and ease of the mining process?

There are a number of data preprocessing techniques. Data cleaning can be applied to remove noise and correct
inconsistencies in the data. Data integration merges data from multiple sources into a coherent data store, such
as a data warehouse or a data cube. Data transformations, such as normalization, may be applied. For example,
normalization may improve the accuracy and e�ciency of mining algorithms involving distance measurements. Data
reduction can reduce the data size by aggregating, eliminating redundant features, or clustering, for instance. These
data processing techniques, when applied prior to mining, can substantially improve the overall data mining results.

In this chapter, you will learn methods for data preprocessing. These methods are organized into the following
categories: data cleaning, data integration and transformation, and data reduction. The use of concept hierarchies
for data discretization, an alternative form of data reduction, is also discussed. Concept hierarchies can be further
used to promote mining at multiple levels of abstraction. You will study how concept hierarchies can be generated
automatically from the given data.

3.1 Why preprocess the data?

Imagine that you are a manager at AllElectronics and have been charged with analyzing the company's data with
respect to the sales at your branch. You immediately set out to perform this task. You carefully study/inspect
the company's database or data warehouse, identifying and selecting the attributes or dimensions to be included
in your analysis, such as item, price, and units sold. Alas! You note that several of the attributes for various
tuples have no recorded value. For your analysis, you would like to include information as to whether each item
purchased was advertised as on sale, yet you discover that this information has not been recorded. Furthermore,
users of your database system have reported errors, unusual values, and inconsistencies in the data recorded for some
transactions. In other words, the data you wish to analyze by data mining techniques are incomplete (lacking
attribute values or certain attributes of interest, or containing only aggregate data), noisy (containing errors, or
outlier values which deviate from the expected), and inconsistent (e.g., containing discrepancies in the department
codes used to categorize items). Welcome to the real world!

Incomplete, noisy, and inconsistent data are commonplace properties of large, real-world databases and data
warehouses. Incomplete data can occur for a number of reasons. Attributes of interest may not always be available,
such as customer information for sales transaction data. Other data may not be included simply because it was
not considered important at the time of entry. Relevant data may not be recorded due to a misunderstanding, or
because of equipment malfunctions. Data that were inconsistent with other recorded data may have been deleted.
Furthermore, the recording of the history or modi�cations to the data may have been overlooked. Missing data,
particularly for tuples with missing values for some attributes, may need to be inferred.

Data can be noisy, having incorrect attribute values, owing to the following. The data collection instruments used
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4 CHAPTER 3. DATA PREPROCESSING

may be faulty. There may have been human or computer errors occurring at data entry. Errors in data transmission
can also occur. There may be technology limitations, such as limited bu�er size for coordinating synchronized data
transfer and consumption. Incorrect data may also result from inconsistencies in naming conventions or data codes
used. Duplicate tuples also require data cleaning.

Data cleaning routines work to \clean" the data by �lling in missing values, smoothing noisy data, identifying or
removing outliers, and resolving inconsistencies. Dirty data can cause confusion for the mining procedure. Although
most mining routines have some procedures for dealing with incomplete or noisy data, they are not always robust.
Instead, they may concentrate on avoiding over�tting the data to the function being modeled. Therefore, a useful
preprocessing step is to run your data through some data cleaning routines. Section 3.2 discusses methods for
\cleaning" up your data.

Getting back to your task at AllElectronics, suppose that you would like to include data from multiple sources in
your analysis. This would involve integrating multiple databases, data cubes, or �les, i.e., data integration. Yet
some attributes representing a given concept may have di�erent names in di�erent databases, causing inconsistencies
and redundancies. For example, the attribute for customer identi�cation may be referred to as customer id is one
data store, and cust id in another. Naming inconsistencies may also occur for attribute values. For example, the
same �rst name could be registered as \Bill" in one database, but \William" in another, and \B." in the third.
Furthermore, you suspect that some attributes may be \derived" or inferred from others (e.g., annual revenue).
Having a large amount of redundant data may slow down or confuse the knowledge discovery process. Clearly, in
addition to data cleaning, steps must be taken to help avoid redundancies during data integration. Typically, data
cleaning and data integration are performed as a preprocessing step when preparing the data for a data warehouse.
Additional data cleaning may be performed to detect and remove redundancies that may have resulted from data
integration.

Getting back to your data, you have decided, say, that you would like to use a distance-based mining algorithm
for your analysis, such as neural networks, nearest neighbor classi�ers, or clustering. Such methods provide better
results if the data to be analyzed have been normalized, that is, scaled to a speci�c range such as [0, 1.0]. Your
customer data, for example, contains the attributes age, and annual salary. The annual salary attribute can take
many more values than age. Therefore, if the attributes are left un-normalized, then distance measurements taken
on annual salary will generally outweigh distance measurements taken on age. Furthermore, it would be useful for
your analysis to obtain aggregate information as to the sales per customer region | something which is not part of
any precomputed data cube in your data warehouse. You soon realize that data transformation operations, such
as normalization and aggregation, are additional data preprocessing procedures that would contribute towards the
success of the mining process. Data integration and data transformation are discussed in Section 3.3.

\Hmmm", you wonder, as you consider your data even further. \The data set I have selected for analysis is
huge | it is sure to slow or wear down the mining process. Is there any way I can `reduce' the size of my data set,
without jeopardizing the data mining results?" Data reduction obtains a reduced representation of the data set
that is much smaller in volume, yet produces the same (or almost the same) analytical results. There are a number
of strategies for data reduction. These include data aggregation (e.g., building a data cube), dimension reduction
(e.g., removing irrelevant attributes through correlation analysis), data compression (e.g., using encoding schemes
such as minimum length encoding or wavelets), and numerosity reduction (e.g., \replacing" the data by alternative,
smaller representations such as clusters, or parametric models). Data can also be \reduced" by generalization,
where low level concepts such as city for customer location, are replaced with higher level concepts, such as region
or province or state. A concept hierarchy is used to organize the concepts into varying levels of abstraction. Data
reduction is the topic of Section 3.4. Since concept hierarchies are so useful in mining at multiple levels of abstraction,
we devote a separate section to the automatic generation of this important data structure. Section 3.5 discusses
concept hierarchy generation, a form of data reduction by data discretization.

Figure 3.1 summarizes the data preprocessing steps described here. Note that the above categorization is not
mutually exclusive. For example, the removal of redundant data may be seen as a form of data cleaning, as well as
data reduction.

In summary, real world data tend to be dirty, incomplete, and inconsistent. Data preprocessing techniques can
improve the quality of the data, thereby helping to improve the accuracy and e�ciency of the subsequent mining
process. Data preprocessing is therefore an important step in the knowledge discovery process, since quality decisions
must be based on quality data. Detecting data anomalies, rectifying them early, and reducing the data to be analyzed
can lead to huge pay-o�s for decision making.
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Figure 3.1: Forms of data preprocessing.

3.2 Data cleaning

Real-world data tend to be incomplete, noisy, and inconsistent. Data cleaning routines attempt to �ll in missing
values, smooth out noise while identifying outliers, and correct inconsistencies in the data. In this section, you will
study basic methods for data cleaning.

3.2.1 Missing values

Imagine that you need to analyze AllElectronics sales and customer data. You note that many tuples have no
recorded value for several attributes, such as customer income. How can you go about �lling in the missing values
for this attribute? Let's look at the following methods.

1. Ignore the tuple: This is usually done when the class label is missing (assuming the mining task involves
classi�cation or description). This method is not very e�ective, unless the tuple contains several attributes with
missing values. It is especially poor when the percentage of missing values per attribute varies considerably.

2. Fill in the missing value manually: In general, this approach is time-consuming and may not be feasible
given a large data set with many missing values.

3. Use a global constant to �ll in the missing value: Replace all missing attribute values by the same
constant, such as a label like \Unknown", or �1. If missing values are replaced by, say, \Unknown", then the
mining program may mistakenly think that they form an interesting concept, since they all have a value in
common | that of \Unknown". Hence, although this method is simple, it is not recommended.

4. Use the attribute mean to �ll in the missing value: For example, suppose that the average income of
AllElectronics customers is $28,000. Use this value to replace the missing value for income.

5. Use the attribute mean for all samples belonging to the same class as the given tuple: For example,
if classifying customers according to credit risk, replace the missing value with the average income value for
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� Sorted data for price (in dollars): 4, 8, 15, 21, 21, 24, 25, 28, 34

� Partition into (equi-width) bins:

{ Bin 1: 4, 8, 15

{ Bin 2: 21, 21, 24

{ Bin 3: 25, 28, 34

� Smoothing by bin means:

{ Bin 1: 9, 9, 9,

{ Bin 2: 22, 22, 22

{ Bin 3: 29, 29, 29

� Smoothing by bin boundaries:

{ Bin 1: 4, 4, 15

{ Bin 2: 21, 21, 24

{ Bin 3: 25, 25, 34

Figure 3.2: Binning methods for data smoothing.

customers in the same credit risk category as that of the given tuple.

6. Use the most probable value to �ll in the missing value: This may be determined with inference-based
tools using a Bayesian formalism or decision tree induction. For example, using the other customer attributes
in your data set, you may construct a decision tree to predict the missing values for income. Decision trees are
described in detail in Chapter 7.

Methods 3 to 6 bias the data. The �lled-in value may not be correct. Method 6, however, is a popular strategy.
In comparison to the other methods, it uses the most information from the present data to predict missing values.

3.2.2 Noisy data

\What is noise?" Noise is a random error or variance in a measured variable. Given a numeric attribute such
as, say, price, how can we \smooth" out the data to remove the noise? Let's look at the following data smoothing
techniques.

1. Binning methods: Binning methods smooth a sorted data value by consulting the \neighborhood", or
values around it. The sorted values are distributed into a number of `buckets', or bins. Because binning
methods consult the neighborhood of values, they perform local smoothing. Figure 3.2 illustrates some binning
techniques. In this example, the data for price are �rst sorted and partitioned into equi-depth bins (of depth 3).
In smoothing by bin means, each value in a bin is replaced by the mean value of the bin. For example, the
mean of the values 4, 8, and 15 in Bin 1 is 9. Therefore, each original value in this bin is replaced by the value
9. Similarly, smoothing by bin medians can be employed, in which each bin value is replaced by the bin
median. In smoothing by bin boundaries, the minimum and maximum values in a given bin are identi�ed
as the bin boundaries. Each bin value is then replaced by the closest boundary value. In general, the larger the
width, the greater the e�ect of the smoothing. Alternatively, bins may be equi-width, where the interval range
of values in each bin is constant. Binning is also used as a discretization technique and is further discussed in
Section 3.5, and in Chapter 6 on association rule mining.

2. Clustering: Outliers may be detected by clustering, where similar values are organized into groups or \clus-
ters". Intuitively, values which fall outside of the set of clusters may be considered outliers (Figure 3.3).
Chapter 9 is dedicated to the topic of clustering.
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Figure 3.3: Outliers may be detected by clustering analysis.

3. Combined computer and human inspection: Outliers may be identi�ed through a combination of com-
puter and human inspection. In one application, for example, an information-theoretic measure was used to
help identify outlier patterns in a handwritten character database for classi�cation. The measure's value re-

ected the \surprise" content of the predicted character label with respect to the known label. Outlier patterns
may be informative (e.g., identifying useful data exceptions, such as di�erent versions of the characters \0"
or \7"), or \garbage" (e.g., mislabeled characters). Patterns whose surprise content is above a threshold are
output to a list. A human can then sort through the patterns in the list to identify the actual garbage ones.
This is much faster than having to manually search through the entire database. The garbage patterns can
then be removed from the (training) database.

4. Regression: Data can be smoothed by �tting the data to a function, such as with regression. Linear regression
involves �nding the \best" line to �t two variables, so that one variable can be used to predict the other. Multiple
linear regression is an extension of linear regression, where more than two variables are involved and the data
are �t to a multidimensional surface. Using regression to �nd a mathematical equation to �t the data helps
smooth out the noise. Regression is further described in Section 3.4.4, as well as in Chapter 7.

Many methods for data smoothing are also methods of data reduction involving discretization. For example,
the binning techniques described above reduce the number of distinct values per attribute. This acts as a form
of data reduction for logic-based data mining methods, such as decision tree induction, which repeatedly make
value comparisons on sorted data. Concept hierarchies are a form of data discretization which can also be used
for data smoothing. A concept hierarchy for price, for example, may map price real values into \inexpensive",
\moderately priced", and \expensive", thereby reducing the number of data values to be handled by the mining
process. Data discretization is discussed in Section 3.5. Some methods of classi�cation, such as neural networks,
have built-in data smoothing mechanisms. Classi�cation is the topic of Chapter 7.

3.2.3 Inconsistent data

There may be inconsistencies in the data recorded for some transactions. Some data inconsistencies may be corrected
manually using external references. For example, errors made at data entry may be corrected by performing a
paper trace. This may be coupled with routines designed to help correct the inconsistent use of codes. Knowledge
engineering tools may also be used to detect the violation of known data constraints. For example, known functional
dependencies between attributes can be used to �nd values contradicting the functional constraints.

There may also be inconsistencies due to data integration, where a given attribute can have di�erent names in
di�erent databases. Redundancies may also result. Data integration and the removal of redundant data are described
in Section 3.3.1.
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3.3 Data integration and transformation

3.3.1 Data integration

It is likely that your data analysis task will involve data integration, which combines data from multiple sources into
a coherent data store, as in data warehousing. These sources may include multiple databases, data cubes, or 
at
�les.

There are a number of issues to consider during data integration. Schema integration can be tricky. How can
like real world entities from multiple data sources be `matched up'? This is referred to as the entity identi�cation
problem. For example, how can the data analyst or the computer be sure that customer id in one database, and
cust number in another refer to the same entity? Databases and data warehouses typically have metadata - that is,
data about the data. Such metadata can be used to help avoid errors in schema integration.

Redundancy is another important issue. An attribute may be redundant if it can be \derived" from another
table, such as annual revenue. Inconsistencies in attribute or dimension naming can also cause redundancies in the
resulting data set.

Some redundancies can be detected by correlation analysis. For example, given two attributes, such analysis
can measure how strongly one attribute implies the other, based on the available data. The correlation between
attributes A and B can be measured by

P (A ^B)
P (A)P (B)

: (3.1)

If the resulting value of Equation (3.1) is greater than 1, then A and B are positively correlated. The higher the
value, the more each attribute implies the other. Hence, a high value may indicate that A (or B) may be removed as
a redundancy. If the resulting value is equal to 1, then A and B are independent and there is no correlation between
them. If the resulting value is less than 1, then A and B are negatively correlated. This means that each attribute
discourages the other. Equation (3.1) may detect a correlation between the customer id and cust number attributes
described above. Correlation analysis is further described in Chapter 6 (Section 6.5.2 on mining correlation rules).

In addition to detecting redundancies between attributes, \duplication" should also be detected at the tuple level
(e.g., where there are two or more identical tuples for a given unique data entry case.

A third important issue in data integration is the detection and resolution of data value con
icts. For example,
for the same real world entity, attribute values from di�erent sources may di�er. This may be due to di�erences in
representation, scaling, or encoding. For instance, a weight attribute may be stored in metric units in one system,
and British imperial units in another. The price of di�erent hotels may involve not only di�erent currencies but also
di�erent services (such as free breakfast) and taxes. Such semantic heterogeneity of data poses great challenges in
data integration.

Careful integration of the data from multiple sources can help reduce and avoid redundancies and inconsistencies
in the resulting data set. This can help improve the accuracy and speed of the subsequent mining process.

3.3.2 Data transformation

In data transformation, the data are transformed or consolidated into forms appropriate for mining. Data transfor-
mation can involve the following:

1. Normalization, where the attribute data are scaled so as to fall within a small speci�ed range, such as -1.0
to 1.0, or 0 to 1.0.

2. Smoothing, which works to remove the noise from data. Such techniques include binning, clustering, and
regression.

3. Aggregation, where summary or aggregation operations are applied to the data. For example, the daily sales
data may be aggregated so as to compute monthly and annual total amounts. This step is typically used in
constructing a data cube for analysis of the data at multiple granularities.
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4. Generalization of the data, where low level or `primitive' (raw) data are replaced by higher level concepts
through the use of concept hierarchies. For example, categorical attributes, like street, can be generalized to
higher level concepts, like city or county. Similarly, values for numeric attributes, like age, may be mapped to
higher level concepts, like young, middle-aged, and senior.

In this section, we discuss normalization. Smoothing is a form of data cleaning, and was discussed in Section 3.2.2.
Aggregation and generalization also serve as forms of data reduction, and are discussed in Sections 3.4 and 3.5,
respectively.

An attribute is normalized by scaling its values so that they fall within a small speci�ed range, such as 0 to 1.0.
Normalization is particularly useful for classi�cation algorithms involving neural networks, or distance measurements
such as nearest-neighbor classi�cation and clustering. If using the neural network backpropagation algorithm for
classi�cation mining (Chapter 7), normalizing the input values for each attribute measured in the training samples
will help speed up the learning phase. For distance-based methods, normalization helps prevent attributes with
initially large ranges (e.g., income) from outweighing attributes with initially smaller ranges (e.g., binary attributes).
There are many methods for data normalization. We study three: min-max normalization, z-score normalization,
and normalization by decimal scaling.

Min-max normalization performs a linear transformation on the original data. Suppose that minA and maxA
are the minimum and maximum values of an attribute A. Min-max normalization maps a value v of A to v0 in the
range [new minA; new maxA] by computing

v0 =
v �minA

maxA �minA
(new maxA � new minA) + new minA: (3.2)

Min-max normalization preserves the relationships among the original data values. It will encounter an \out of
bounds" error if a future input case for normalization falls outside of the original data range for A.

Example 3.1 Suppose that the maximum and minimum values for the attribute income are $98,000 and $12,000,
respectively. We would like to map income to the range [0; 1]. By min-max normalization, a value of $73,600 for
income is transformed to 73;600�12;000

98;000�12;000
(1� 0) + 0 = 0:716. 2

In z-score normalization (or zero-mean normalization), the values for an attribute A are normalized based on
the mean and standard deviation of A. A value v of A is normalized to v0 by computing

v0 =
v �meanA

stand devA
(3.3)

where meanA and stand devA are the mean and standard deviation, respectively, of attribute A. This method of
normalization is useful when the actual minimum and maximum of attribute A are unknown, or when there are
outliers which dominate the min-max normalization.

Example 3.2 Suppose that the mean and standard deviation of the values for the attribute income are $54,000 and
$16,000, respectively. With z-score normalization, a value of $73,600 for income is transformed to 73;600�54;000

16;000
=

1:225. 2

Normalization by decimal scaling normalizes by moving the decimal point of values of attribute A. The
number of decimal points moved depends on the maximum absolute value of A. A value v of A is normalized to v0

by computing

v0 =
v

10j
; (3.4)

where j is the smallest integer such that Max(jv0j) < 1.

Example 3.3 Suppose that the recorded values of A range from �986 to 917. The maximum absolute value of A is
986. To normalize by decimal scaling, we therefore divide each value by 1,000 (i.e., j = 3) so that �986 normalizes
to �0:986. 2
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Note that normalization can change the original data quite a bit, especially the latter two of the methods shown
above. It is also necessary to save the normalization parameters (such as the mean and standard deviation if using
z-score normalization) so that future data can be normalized in a uniform manner.

3.4 Data reduction

Imagine that you have selected data from the AllElectronics data warehouse for analysis. The data set will likely be
huge! Complex data analysis and mining on huge amounts of data may take a very long time, making such analysis
impractical or infeasible. Is there any way to \reduce" the size of the data set without jeopardizing the data mining
results?

Data reduction techniques can be applied to obtain a reduced representation of the data set that is much
smaller in volume, yet closely maintains the integrity of the original data. That is, mining on the reduced data set
should be more e�cient yet produce the same (or almost the same) analytical results.

Strategies for data reduction include the following.

1. Data cube aggregation, where aggregation operations are applied to the data in the construction of a data
cube.

2. Dimension reduction, where irrelevant, weakly relevant, or redundant attributes or dimensions may be
detected and removed.

3. Data compression, where encoding mechanisms are used to reduce the data set size.

4. Numerosity reduction, where the data are replaced or estimated by alternative, smaller data representations
such as parametric models (which need store only the model parameters instead of the actual data), or non-
parametric methods such as clustering, sampling, and the use of histograms.

5. Discretization and concept hierarchy generation, where raw data values for attributes are replaced
by ranges or higher conceptual levels. Concept hierarchies allow the mining of data at multiple levels of
abstraction, and are a powerful tool for data mining. We therefore defer the discussion of automatic concept
hierarchy generation to Section 3.5 which is devoted entirely to this topic.

Strategies 1 to 4 above are discussed in the remainder of this section. The computational time spent on data
reduction should not outweight or \erase" the time saved by mining on a reduced data set size.

3.4.1 Data cube aggregation

Imagine that you have collected the data for your analysis. These data consist of the AllElectronics sales per quarter,
for the years 1997 to 1999. You are, however, interested in the annual sales (total per year), rather than the total
per quarter. Thus the data can be aggregated so that the resulting data summarize the total sales per year instead of
per quarter. This aggregation is illustrated in Figure 3.4. The resulting data set is smaller in volume, without loss
of information necessary for the analysis task.

Data cubes were discussed in Chapter 2. For completeness, we briefely review some of that material here. Data
cubes store multidimensional aggregated information. For example, Figure 3.5 shows a data cube for multidimensional
analysis of sales data with respect to annual sales per item type for each AllElectronics branch. Each cells holds
an aggregate data value, corresponding to the data point in multidimensional space. Concept hierarchies may exist
for each attribute, allowing the analysis of data at multiple levels of abstraction. For example, a hierarchy for
branch could allow branches to be grouped into regions, based on their address. Data cubes provide fast access to
precomputed, summarized data, thereby bene�ting on-line analytical processing as well as data mining.

The cube created at the lowest level of abstraction is referred to as the base cuboid. A cube for the highest level
of abstraction is the apex cuboid. For the sales data of Figure 3.5, the apex cuboid would give one total | the total
sales for all three years, for all item types, and for all branches. Data cubes created for varying levels of abstraction
are sometimes referred to as cuboids, so that a \data cube" may instead refer to a lattice of cuboids. Each higher
level of abstraction further reduces the resulting data size.
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Figure 3.4: Sales data for a given branch of AllElectronics for the years 1997 to 1999. In the data on the left, the
sales are shown per quarter. In the data on the right, the data are aggregated to provide the annual sales.
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Figure 3.5: A data cube for sales at AllElectronics.

The base cuboid should correspond to an individual entity of interest, such as sales or customer. In other words,
the lowest level should be \usable", or useful for the analysis. Since data cubes provide fast accessing to precomputed,
summarized data, they should be used when possible to reply to queries regarding aggregated information. When
replying to such OLAP queries or data mining requests, the smallest available cuboid relevant to the given task
should be used. This issue is also addressed in Chapter 2.

3.4.2 Dimensionality reduction

Data sets for analysis may contain hundreds of attributes, many of which may be irrelevant to the mining task, or
redundant. For example, if the task is to classify customers as to whether or not they are likely to purchase a popular
new CD at AllElectronics when noti�ed of a sale, attributes such as the customer's telephone number are likely to be
irrelevant, unlike attributes such as age or music taste. Although it may be possible for a domain expert to pick out
some of the useful attributes, this can be a di�cult and time-consuming task, especially when the behavior of the
data is not well-known (hence, a reason behind its analysis!). Leaving out relevant attributes, or keeping irrelevant
attributes may be detrimental, causing confusion for the mining algorithm employed. This can result in discovered
patterns of poor quality. In addition, the added volume of irrelevant or redundant attributes can slow down the
mining process.
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Forward Selection
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Figure 3.6: Greedy (heuristic) methods for attribute subset selection.

Dimensionality reduction reduces the data set size by removing such attributes (or dimensions) from it. Typically,
methods of attribute subset selection are applied. The goal of attribute subset selection is to �nd a minimum set
of attributes such that the resulting probability distribution of the data classes is as close as possible to the original
distribution obtained using all attributes. Mining on a reduced set of attributes has an additional bene�t. It reduces
the number of attributes appearing in the discovered patterns, helping to make the patterns easier to understand.

\How can we �nd a `good' subset of the original attributes?" There are 2d possible subsets of d attributes. An
exhaustive search for the optimal subset of attributes can be prohibitively expensive, especially as d and the number
of data classes increase. Therefore, heuristic methods which explore a reduced search space are commonly used for
attribute subset selection. These methods are typically greedy in that, while searching through attribute space, they
always make what looks to be the best choice at the time. Their strategy is to make a locally optimal choice in the
hope that this will lead to a globally optimal solution. Such greedy methods are e�ective in practice, and may come
close to estimating an optimal solution.

The `best' (and `worst') attributes are typically selected using tests of statistical signi�cance, which assume that
the attributes are independent of one another. Many other attribute evaluation measures can be used, such as the
information gain measure used in building decision trees for classi�cation1.

Basic heuristic methods of attribute subset selection include the following techniques, some of which are illustrated
in Figure 3.6.

1. Step-wise forward selection: The procedure starts with an empty set of attributes. The best of the original
attributes is determined and added to the set. At each subsequent iteration or step, the best of the remaining
original attributes is added to the set.

2. Step-wise backward elimination: The procedure starts with the full set of attributes. At each step, it
removes the worst attribute remaining in the set.

3. Combination forward selection and backward elimination: The step-wise forward selection and back-
ward elimination methods can be combined, where at each step one selects the best attribute and removes the
worst from among the remaining attributes.

The stopping criteria for methods 1 to 3 may vary. The procedure may employ a threshold on the measure used
to determine when to stop the attribute selection process.

4. Decision tree induction: Decision tree algorithms, such as ID3 and C4.5, were originally intended for
classi�cation. Decision tree induction constructs a 
ow-chart-like structure where each internal (non-leaf) node
denotes a test on an attribute, each branch corresponds to an outcome of the test, and each external (leaf)

1The information gain measure is described in Chapters 5 and 7.
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node denotes a class prediction. At each node, the algorithm chooses the \best" attribute to partition the data
into individual classes.

When decision tree induction is used for attribute subset selection, a tree is constructed from the given data.
All attributes that do not appear in the tree are assumed to be irrelevant. The set of attributes appearing in
the tree form the reduced subset of attributes. This method of attribute selection is visited again in greater
detail in Chapter 5 on concept description.

3.4.3 Data compression

In data compression, data encoding or transformations are applied so as to obtain a reduced or \compressed"
representation of the original data. If the original data can be reconstructed from the compressed data without any
loss of information, the data compression technique used is called lossless. If, instead, we can reconstruct only an
approximation of the original data, then the data compression technique is called lossy. There are several well-tuned
algorithms for string compression. Although they are typically lossless, they allow only limited manipulation of the
data. In this section, we instead focus on two popular and e�ective methods of lossy data compression: wavelet
transforms, and principal components analysis.

Wavelet transforms

The discrete wavelet transform (DWT) is a linear signal processing technique that, when applied to a data
vector D, transforms it to a numerically di�erent vector, D0, of wavelet coe�cients. The two vectors are of the
same length.

\Hmmm", you wonder. \How can this technique be useful for data reduction if the wavelet transformed data are
of the same length as the original data?" The usefulness lies in the fact that the wavelet transformed data can be
truncated. A compressed approximation of the data can be retained by storing only a small fraction of the strongest
of the wavelet coe�cients. For example, all wavelet coe�cients larger than some user-speci�ed threshold can be
retained. The remaining coe�cients are set to 0. The resulting data representation is therefore very sparse, so that
operations that can take advantage of data sparsity are computationally very fast if performed in wavelet space.

The DWT is closely related to the discrete Fourier transform (DFT), a signal processing technique involving
sines and cosines. In general, however, the DWT achieves better lossy compression. That is, if the same number
of coe�cients are retained for a DWT and a DFT of a given data vector, the DWT version will provide a more
accurate approximation of the original data. Unlike DFT, wavelets are quite localized in space, contributing to the
conservation of local detail.

There is only one DFT, yet there are several DWTs. The general algorithm for a discrete wavelet transform is
as follows.

1. The length, L, of the input data vector must be an integer power of two. This condition can be met by padding
the data vector with zeros, as necessary.

2. Each transform involves applying two functions. The �rst applies some data smoothing, such as a sum or
weighted average. The second performs a weighted di�erence.

3. The two functions are applied to pairs of the input data, resulting in two sets of data of length L=2. In general,
these respectively represent a smoothed version of the input data, and the high-frequency content of it.

4. The two functions are recursively applied to the sets of data obtained in the previous loop, until the resulting
data sets obtained are of desired length.

5. A selection of values from the data sets obtained in the above iterations are designated the wavelet coe�cients
of the transformed data.

Equivalently, a matrix multiplication can be applied to the input data in order to obtain the wavelet coe�cients.
For example, given an input vector of length 4 (represented as the column vector [x0; x1; x2; x3]), the 4-point Haar
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transform of the vector can be obtained by the following matrix multiplication:
2
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The matrix on the left is orthonormal, meaning that the columns are unit vectors (multiplied by a constant) and are
mutually orthogonal, so that the matrix inverse is just its transpose. Although we do not have room to discuss
it here, this property allows the reconstruction of the data from the smooth and smooth-di�erence data sets. Other
popular wavelet transforms include the Daubechies-4 and the Daubechies-6 transforms.

Wavelet transforms can be applied to multidimensional data, such as a data cube. This is done by �rst applying
the transform to the �rst dimension, then to the second, and so on. The computational complexity involved is linear
with respect to the number of cells in the cube. Wavelet transforms give good results on sparse or skewed data, and
data with ordered attributes.

Principal components analysis

Herein, we provide an intuitive introduction to principal components analysis as a method of data compression. A
detailed theoretical explanation is beyond the scope of this book.

Suppose that the data to be compressed consists of N tuples or data vectors, from k-dimensions. Principal

components analysis (PCA) searches for c k-dimensional orthogonal vectors that can best be used to represent
the data, where c << N . The original data is thus projected onto a much smaller space, resulting in data compression.
PCA can be used as a form of dimensionality reduction. However, unlike attribute subset selection, which reduces
the attribute set size by retaining a subset of the initial set of attributes, PCA \combines" the essence of attributes
by creating an alternative, smaller set of variables. The initial data can then be projected onto this smaller set.

The basic procedure is as follows.

1. The input data are normalized, so that each attribute falls within the same range. This step helps ensure that
attributes with large domains will not dominate attributes with smaller domains.

2. PCA computes N orthonormal vectors which provide a basis for the normalized input data. These are unit
vectors that each point in a direction perpendicular to the others. These vectors are referred to as the principal
components. The input data are a linear combination of the principal components.

3. The principal components are sorted in order of decreasing \signi�cance" or strength. The principal components
essentially serve as a new set of axes for the data, providing important information about variance. That is,
the sorted axes are such that the �rst axis shows the most variance among the data, the second axis shows the
next highest variance, and so on. This information helps identify groups or patterns within the data.

4. Since the components are sorted according to decreasing order of \signi�cance", the size of the data can be
reduced by eliminating the weaker components, i.e., those with low variance. Using the strongest principal
components, it should be possible to reconstruct a good approximation of the original data.

PCA can be applied to ordered and unordered attributes, and can handle sparse data and skewed data. Mul-
tidimensional data of more than two dimensions can be handled by reducing the problem to two dimensions. For
example, a 3-D data cube for sales with the dimensions item type, branch, and year must �rst be reduced to a 2-D
cube, such as with the dimensions item type, and branch � year.

3.4.4 Numerosity reduction

\Can we reduce the data volume by choosing alternative, `smaller' forms of data representation?" Techniques of nu-
merosity reduction can indeed be applied for this purpose. These techniques may be parametric or non-parametric.
For parametric methods, a model is used to estimate the data, so that typically only the data parameters need be
stored, instead of the actual data. (Outliers may also be stored). Log-linear models, which estimate discrete multi-
dimensional probability distributions, are an example. Non-parametric methods for storing reduced representations
of the data include histograms, clustering, and sampling.
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Figure 3.7: A histogram for price using singleton buckets - each bucket represents one price-value/frequency pair.

Let's have a look at each of the numerosity reduction techniques mentioned above.

Regression and log-linear models

Regression and log-linear models can be used to approximate the given data. In linear regression, the data are
modeled to �t a straight line. For example, a random variable, Y (called a response variable), can be modeled as a
linear function of another random variable, X (called a predictor variable), with the equation

Y = �+ �X; (3.6)

where the variance of Y is assumed to be constant. The coe�cients � and � (called regression coe�cients) specify
the Y -intercept and slope of the line, respectively. These coe�cients can be solved for by the method of least squares,
which minimizes the error between the actual line separating the data and the estimate of the line. Multiple

regression is an extension of linear regression allowing a response variable Y to be modeled as a linear function of
a multidimensional feature vector.

Log-linearmodels approximate discrete multidimensional probability distributions. The method can be used to
estimate the probability of each cell in a base cuboid for a set of discretized attributes, based on the smaller cuboids
making up the data cube lattice. This allows higher order data cubes to be constructed from lower order ones.
Log-linear models are therefore also useful for data compression (since the smaller order cuboids together typically
occupy less space than the base cuboid) and data smoothing (since cell estimates in the smaller order cuboids are less
subject to sampling variations than cell estimates in the base cuboid). Regression and log-linear models are further
discussed in Chapter 7 (Section 7.8 on Prediction).

Histograms

Histograms use binning to approximate data distributions and are a popular form of data reduction. A histogram

for an attribute A partitions the data distribution of A into disjoint subsets, or buckets. The buckets are displayed
on a horizontal axis, while the height (and area) of a bucket typically re
ects the average frequency of the values
represented by the bucket. If each bucket represents only a single attribute-value/frequency pair, the buckets are
called singleton buckets. Often, buckets instead represent continuous ranges for the given attribute.

Example 3.4 The following data are a list of prices of commonly sold items at AllElectronics (rounded to the
nearest dollar). The numbers have been sorted.

1, 1, 5, 5, 5, 5, 5, 8, 8, 10, 10, 10, 10, 12, 14, 14, 14, 15, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18, 18, 18, 18, 20, 20,
20, 20, 20, 20, 20, 21, 21, 21, 21, 25, 25, 25, 25, 25, 28, 28, 30, 30, 30.



16 CHAPTER 3. DATA PREPROCESSING

1

2

3

4

5

6

1-10 11-20 21-30

count

price

Figure 3.8: A histogram for price where values are aggregated so that each bucket has a uniform width of $10.

Figure 3.7 shows a histogram for the data using singleton buckets. To further reduce the data, it is common to
have each bucket denote a continuous range of values for the given attribute. In Figure 3.8, each bucket represents
a di�erent $10 range for price. 2

How are the buckets determined and the attribute values partitioned? There are several partitioning rules,
including the following.

1. Equi-width: In an equi-width histogram, the width of each bucket range is constant (such as the width of
$10 for the buckets in Figure 3.8).

2. Equi-depth (or equi-height): In an equi-depth histogram, the buckets are created so that, roughly, the fre-
quency of each bucket is constant (that is, each bucket contains roughly the same number of contiguous data
samples).

3. V-Optimal: If we consider all of the possible histograms for a given number of buckets, the V-optimal
histogram is the one with the least variance. Histogram variance is a weighted sum of the original values that
each bucket represents, where bucket weight is equal to the number of values in the bucket.

4. MaxDi�: In a MaxDi� histogram, we consider the di�erence between each pair of adjacent values. A bucket
boundary is established between each pair for pairs having the ��1 largest di�erences, where � is user-speci�ed.

V-Optimal and MaxDi� histograms tend to be the most accurate and practical. Histograms are highly e�ec-
tive at approximating both sparse and dense data, as well as highly skewed, and uniform data. The histograms
described above for single attributes can be extended for multiple attributes. Multidimensional histograms can cap-
ture dependencies between attributes. Such histograms have been found e�ective in approximating data with up
to �ve attributes. More studies are needed regarding the e�ectiveness of multidimensional histograms for very high
dimensions. Singleton buckets are useful for storing outliers with high frequency. Histograms are further described
in Chapter 5 (Section 5.6 on mining descriptive statistical measures in large databases).

Clustering

Clustering techniques consider data tuples as objects. They partition the objects into groups or clusters, so that
objects within a cluster are \similar" to one another and \dissimilar" to objects in other clusters. Similarity is
commonly de�ned in terms of how \close" the objects are in space, based on a distance function. The \quality" of a
cluster may be represented by its diameter, the maximum distance between any two objects in the cluster. Centroid
distance is an alternative measure of cluster quality, and is de�ned as the average distance of each cluster object
from the cluster centroid (denoting the \average object", or average point in space for the cluster). Figure 3.9 shows
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Figure 3.9: A 2-D plot of customer data with respect to customer locations in a city, showing three data clusters.
Each cluster centroid is marked with a \+".
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Figure 3.10: The root of a B+-tree for a given set of data.

a 2-D plot of customer data with respect to customer locations in a city, where the centroid of each cluster is shown
with a \+". Three data clusters are visible.

In data reduction, the cluster representations of the data are used to replace the actual data. The e�ectiveness
of this technique depends on the nature of the data. It is much more e�ective for data that can be organized into
distinct clusters, than for smeared data.

In database systems,multidimensional index trees are primarily used for providing fast data access. They can
also be used for hierarchical data reduction, providing a multiresolution clustering of the data. This can be used to
provide approximate answers to queries. An index tree recursively partitions the multidimensional space for a given
set of data objects, with the root node representing the entire space. Such trees are typically balanced, consisting of
internal and leaf nodes. Each parent node contains keys and pointers to child nodes that, collectively, represent the
space represented by the parent node. Each leaf node contains pointers to the data tuples they represent (or to the
actual tuples).

An index tree can therefore store aggregate and detail data at varying levels of resolution or abstraction. It
provides a hierarchy of clusterings of the data set, where each cluster has a label that holds for the data contained
in the cluster. If we consider each child of a parent node as a bucket, then an index tree can be considered as a
hierarchical histogram. For example, consider the root of a B+-tree as shown in Figure 3.10, with pointers to the
data keys 986, 3396, 5411, 8392, and 9544. Suppose that the tree contains 10,000 tuples with keys ranging from 1
to 9,999. The data in the tree can be approximated by an equi-depth histogram of 6 buckets for the key ranges 1 to
985, 986 to 3395, 3396 to 5410, 5411 to 8392, 8392 to 9543, and 9544 to 9999. Each bucket contains roughly 10,000/6
items. Similarly, each bucket is subdivided into smaller buckets, allowing for aggregate data at a �ner-detailed level.
The use of multidimensional index trees as a form of data resolution relies on an ordering of the attribute values in
each dimension. Multidimensional index trees include R-trees, quad-trees, and their variations. They are well-suited
for handling both sparse and skewed data.

There are many measures for de�ning clusters and cluster quality. Clustering methods are further described in
Chapter 8.
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Sampling

Sampling can be used as a data reduction technique since it allows a large data set to be represented by a much
smaller random sample (or subset) of the data. Suppose that a large data set, D, contains N tuples. Let's have a
look at some possible samples for D.
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Figure 3.11: Sampling can be used for data reduction.

1. Simple random sample without replacement (SRSWOR) of size n: This is created by drawing n of the
N tuples from D (n < N ), where the probably of drawing any tuple in D is 1=N , i.e., all tuples are equally
likely.

2. Simple random sample with replacement (SRSWR) of size n: This is similar to SRSWOR, except
that each time a tuple is drawn from D, it is recorded and then replaced. That is, after a tuple is drawn, it is
placed back in D so that it may be drawn again.
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3. Cluster sample: If the tuples in D are grouped into M mutually disjoint \clusters", then a SRS of m clusters
can be obtained, where m < M . For example, tuples in a database are usually retrieved a page at a time, so
that each page can be considered a cluster. A reduced data representation can be obtained by applying, say,
SRSWOR to the pages, resulting in a cluster sample of the tuples.

4. Strati�ed sample: If D is divided into mutually disjoint parts called \strata", a strati�ed sample of D is
generated by obtaining a SRS at each stratum. This helps to ensure a representative sample, especially when
the data are skewed. For example, a strati�ed sample may be obtained from customer data, where stratum is
created for each customer age group. In this way, the age group having the smallest number of customers will
be sure to be represented.

These samples are illustrated in Figure 3.11. They represent the most commonly used forms of sampling for data
reduction.

An advantage of sampling for data reduction is that the cost of obtaining a sample is proportional to the size of
the sample, n, as opposed to N , the data set size. Hence, sampling complexity is potentially sub-linear to the size
of the data. Other data reduction techniques can require at least one complete pass through D. For a �xed sample
size, sampling complexity increases only linearly as the number of data dimensions, d, increases, while techniques
using histograms, for example, increase exponentially in d.

When applied to data reduction, sampling is most commonly used to estimate the answer to an aggregate query.
It is possible (using the central limit theorem) to determine a su�cient sample size for estimating a given function
within a speci�ed degree of error. This sample size, n, may be extremely small in comparison to N . Sampling is
a natural choice for the progressive re�nement of a reduced data set. Such a set can be further re�ned by simply
increasing the sample size.

3.5 Discretization and concept hierarchy generation

Discretization techniques can be used to reduce the number of values for a given continuous attribute, by dividing
the range of the attribute into intervals. Interval labels can then be used to replace actual data values. Reducing
the number of values for an attribute is especially bene�cial if decision tree-based methods of classi�cation mining
are to be applied to the preprocessed data. These methods are typically recursive, where a large amount of time is
spent on sorting the data at each step. Hence, the smaller the number of distinct values to sort, the faster these
methods should be. Many discretization techniques can be applied recursively in order to provide a hierarchical,
or multiresolution partitioning of the attribute values, known as a concept hierarchy. Concept hierarchies were
introduced in Chapter 2. They are useful for mining at multiple levels of abstraction.

A concept hierarchy for a given numeric attribute de�nes a discretization of the attribute. Concept hierarchies can
be used to reduce the data by collecting and replacing low level concepts (such as numeric values for the attribute age)
by higher level concepts (such as young, middle-aged, or senior). Although detail is lost by such data generalization,
the generalized data may be more meaningful and easier to interpret, and will require less space than the original
data. Mining on a reduced data set will require fewer input/output operations and be more e�cient than mining on
a larger, ungeneralized data set. An example of a concept hierarchy for the attribute price is given in Figure 3.12.
More than one concept hierarchy can be de�ned for the same attribute in order to accommodate the needs of the
various users.

Manual de�nition of concept hierarchies can be a tedious and time-consuming task for the user or domain expert.
Fortunately, many hierarchies are implicit within the database schema, and can be de�ned at the schema de�nition
level. Concept hierarchies often can be automatically generated or dynamically re�ned based on statistical analysis
of the data distribution.

Let's look at the generation of concept hierarchies for numeric and categorical data.

3.5.1 Discretization and concept hierarchy generation for numeric data

It is di�cult and tedious to specify concept hierarchies for numeric attributes due to the wide diversity of possible
data ranges and the frequent updates of data values.

Concept hierarchies for numeric attributes can be constructed automatically based on data distribution analysis.
We examine �ve methods for numeric concept hierarchy generation. These include binning, histogram analysis,
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Figure 3.12: A concept hierarchy for the attribute price.
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Figure 3.13: Histogram showing the distribution of values for the attribute price.

clustering analysis, entropy-based discretization, and data segmentation by \natural partitioning".

1. Binning.

Section 3.2.2 discussed binning methods for data smoothing. These methods are also forms of discretization.
For example, attribute values can be discretized by replacing each bin value by the bin mean or median, as in
smoothing by bin means or smoothing by bin medians, respectively. These techniques can be applied recursively
to the resulting partitions in order to generate concept hierarchies.

2. Histogram analysis.

Histograms, as discussed in Section 3.4.4, can also be used for discretization. Figure 3.13 presents a histogram
showing the data distribution of the attribute price for a given data set. For example, the most frequent price
range is roughly $300-$325. Partitioning rules can be used to de�ne the ranges of values. For instance, in an
equi-width histogram, the values are partitioned into equal sized partions or ranges (e.g., ($0-$100], ($100-$200],
. . . , ($900-$1,000]). With an equi-depth histogram, the values are partitioned so that, ideally, each partition
contains the same number of data samples. The histogram analysis algorithm can be applied recursively to
each partition in order to automatically generate a multilevel concept hierarchy, with the procedure terminating
once a pre-speci�ed number of concept levels has been reached. A minimum interval size can also be used per
level to control the recursive procedure. This speci�es the minimum width of a partition, or the minimum
number of values for each partition at each level. A concept hierarchy for price, generated from the data of
Figure 3.13 is shown in Figure 3.12.

3. Clustering analysis.

A clustering algorithm can be applied to partition data into clusters or groups. Each cluster forms a node of a
concept hierarchy, where all nodes are at the same conceptual level. Each cluster may be further decomposed
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into several subclusters, forming a lower level of the hierarchy. Clusters may also be grouped together in order
to form a higher conceptual level of the hierarchy. Clustering methods for data mining are studied in Chapter
8.

4. Entropy-based discretization.

An information-based measure called \entropy" can be used to recursively partition the values of a numeric
attribute A, resulting in a hierarchical discretization. Such a discretization forms a numerical concept hierarchy
for the attribute. Given a set of data tuples, S, the basic method for entropy-based discretization of A is as
follows.

� Each value of A can be considered a potential interval boundary or threshold T . For example, a value v of
A can partition the samples in S into two subsets satisfying the conditions A < v and A � v, respectively,
thereby creating a binary discretization.

� Given S, the threshold value selected is the one that maximizes the information gain resulting from the
subsequent partitioning. The information gain is:

I(S; T ) =
jS1j
jSj Ent(S1) +

jS2j
jSj Ent(S2); (3.7)

where S1 and S2 correspond to the samples in S satisfying the conditions A < T and A � T , respectively.
The entropy function Ent for a given set is calculated based on the class distribution of the samples in
the set. For example, given m classes, the entropy of S1 is:

Ent(S1) = �
mX
i=1

pilog2(pi); (3.8)

where pi is the probability of class i in S1, determined by dividing the number of samples of class i in S1
by the total number of samples in S1. The value of Ent(S2) can be computed similarly.

� The process of determining a threshold value is recursively applied to each partition obtained, until some
stopping criterion is met, such as

Ent(S) � I(S; T ) > � (3.9)

Experiments show that entropy-based discretization can reduce data size and may improve classi�cation ac-
curacy. The information gain and entropy measures described here are also used for decision tree induction.
These measures are revisited in greater detail in Chapter 5 (Section 5.4 on analytical characterization) and
Chapter 7 (Section 7.3 on decision tree induction).

5. Segmentation by natural partitioning.

Although binning, histogram analysis, clustering and entropy-based discretization are useful in the generation
of numerical hierarchies, many users would like to see numerical ranges partitioned into relatively uniform,
easy-to-read intervals that appear intuitive or \natural". For example, annual salaries broken into ranges
like [$50,000, $60,000) are often more desirable than ranges like [$51263.98, $60872.34), obtained by some
sophisticated clustering analysis.

The 3-4-5 rule can be used to segment numeric data into relatively uniform, \natural" intervals. In general,
the rule partitions a given range of data into either 3, 4, or 5 relatively equi-length intervals, recursively and
level by level, based on the value range at the most signi�cant digit. The rule is as follows.

(a) If an interval covers 3, 6, 7 or 9 distinct values at the most signi�cant digit, then partition the range into
3 intervals (3 equi-width intervals for 3, 6, 9, and three intervals in the grouping of 2-3-2 for 7);

(b) if it covers 2, 4, or 8 distinct values at the most signi�cant digit, then partition the range into 4 equi-width
intervals; and
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Figure 3.14: Automatic generation of a concept hierarchy for pro�t based on the 3-4-5 rule.

(c) if it covers 1, 5, or 10 distinct values at the most signi�cant digit, then partition the range into 5 equi-width
intervals.

The rule can be recursively applied to each interval, creating a concept hierarchy for the given numeric attribute.
Since there could be some dramatically large positive or negative values in a data set, the top level segmentation,
based merely on the minimum and maximum values, may derive distorted results. For example, the assets of a
few people could be several orders of magnitude higher than those of others in a data set. Segmentation based
on the maximal asset values may lead to a highly biased hierarchy. Thus the top level segmentation can be
performed based on the range of data values representing the majority (e.g., 5%-tile to 95%-tile) of the given
data. The extremely high or low values beyond the top level segmentation will form distinct interval(s) which
can be handled separately, but in a similar manner.

The following example illustrates the use of the 3-4-5 rule for the automatic construction of a numeric hierarchy.

Example 3.5 Suppose that pro�ts at di�erent branches of AllElectronics for the year 1997 cover a wide
range, from �$351,976.00 to $4,700,896.50. A user wishes to have a concept hierarchy for pro�t automatically
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generated. For improved readability, we use the notation (l | r] to represent the interval (l; r]. For example,
(�$1,000,000 | $0] denotes the range from �$1,000,000 (exclusive) to $0 (inclusive).

Suppose that the data within the 5%-tile and 95%-tile are between �$159,876 and $1,838,761. The results of
applying the 3-4-5 rule are shown in Figure 3.14.

� Step 1: Based on the above information, the minimum and maximum values are: MIN = �$351; 976:00,
and MAX = $4; 700; 896:50. The low (5%-tile) and high (95%-tile) values to be considered for the top or
�rst level of segmentation are: LOW = �$159; 876, and HIGH = $1; 838; 761.

� Step 2: Given LOW and HIGH, the most signi�cant digit is at the million dollar digit position (i.e.,msd =
1,000,000). Rounding LOW down to the million dollar digit, we get LOW 0 = �$1; 000; 000; and rounding
HIGH up to the million dollar digit, we get HIGH0 = +$2; 000; 000.

� Step 3: Since this interval ranges over 3 distinct values at the most signi�cant digit, i.e., (2; 000; 000�
(�1; 000; 000))=1; 000;000 = 3, the segment is partitioned into 3 equi-width subsegments according to the
3-4-5 rule: (�$1,000,000 | $0], ($0 | $1,000,000], and ($1,000,000 | $2,000,000]. This represents the
top tier of the hierarchy.

� Step 4: We now examine the MIN and MAX values to see how they \�t" into the �rst level partitions.

Since the �rst interval, (�$1; 000; 000 | $0] covers the MIN value, i.e., LOW 0 < MIN , we can adjust
the left boundary of this interval to make the interval smaller. The most signi�cant digit of MIN is the
hundred thousand digit position. Rounding MIN down to this position, we get MIN 0 = �$400; 000.
Therefore, the �rst interval is rede�ned as (�$400; 000 | 0].

Since the last interval, ($1,000,000| $2,000,000] does not cover theMAX value, i.e.,MAX > HIGH0, we
need to create a new interval to cover it. Rounding up MAX at its most signi�cant digit position, the new
interval is ($2,000,000 | $5,000,000]. Hence, the top most level of the hierarchy contains four partitions,
(�$400,000 | $0], ($0 | $1,000,000], ($1,000,000 | $2,000,000], and ($2,000,000 | $5,000,000].

� Step 5: Recursively, each interval can be further partitioned according to the 3-4-5 rule to form the next
lower level of the hierarchy:

{ The �rst interval (�$400,000 | $0] is partitioned into 4 sub-intervals: (�$400,000 | �$300,000],
(�$300,000 | �$200,000], (�$200,000 | �$100,000], and (�$100,000 | $0].

{ The second interval, ($0 | $1,000,000], is partitioned into 5 sub-intervals: ($0 | $200,000], ($200,000
| $400,000], ($400,000 | $600,000], ($600,000 | $800,000], and ($800,000 | $1,000,000].

{ The third interval, ($1,000,000 | $2,000,000], is partitioned into 5 sub-intervals: ($1,000,000 |
$1,200,000], ($1,200,000 | $1,400,000], ($1,400,000 | $1,600,000], ($1,600,000 | $1,800,000], and
($1,800,000 | $2,000,000].

{ The last interval, ($2,000,000 | $5,000,000], is partitioned into 3 sub-intervals: ($2,000,000 |
$3,000,000], ($3,000,000 | $4,000,000], and ($4,000,000 | $5,000,000].

Similarly, the 3-4-5 rule can be carried on iteratively at deeper levels, as necessary. 2

3.5.2 Concept hierarchy generation for categorical data

Categorical data are discrete data. Categorical attributes have a �nite (but possibly large) number of distinct values,
with no ordering among the values. Examples include geographic location, job category, and item type. There are
several methods for the generation of concept hierarchies for categorical data.

1. Speci�cation of a partial ordering of attributes explicitly at the schema level by users or experts.

Concept hierarchies for categorical attributes or dimensions typically involve a group of attributes. A user or
an expert can easily de�ne a concept hierarchy by specifying a partial or total ordering of the attributes at
the schema level. For example, a relational database or a dimension location of a data warehouse may contain
the following group of attributes: street, city, province or state, and country. A hierarchy can be de�ned by
specifying the total ordering among these attributes at the schema level, such as street< city < province or state
< country.
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Figure 3.15: Automatic generation of a schema concept hierarchy based on the number of distinct attribute values.

2. Speci�cation of a portion of a hierarchy by explicit data grouping.

This is essentially the manual de�nition of a portion of concept hierarchy. In a large database, it is unrealistic
to de�ne an entire concept hierarchy by explicit value enumeration. However, it is realistic to specify explicit
groupings for a small portion of intermediate level data. For example, after specifying that province and country
form a hierarchy at the schema level, one may like to add some intermediate levels manually, such as de�ning
explicitly, \fAlberta, Saskatchewan, Manitobag � prairies Canada", and \fBritish Columbia, prairies Canadag
� Western Canada".

3. Speci�cation of a set of attributes, but not of their partial ordering.

A user may simply group a set of attributes as a preferred dimension or hierarchy, but may omit stating their
partial order explicitly. This may require the system to automatically generate the attribute ordering so as
to construct a meaningful concept hierarchy. Without knowledge of data semantics, it is di�cult to provide
an ideal hierarchical ordering for an arbitrary set of attributes. However, an important observation is that
since higher level concepts generally cover several subordinate lower level concepts, an attribute de�ning a high
concept level will usually contain a smaller number of distinct values than an attribute de�ning a lower concept
level. Based on this observation, a concept hierarchy can be automatically generated based on the number of
distinct values per attribute in the given attribute set. The attribute with the most distinct values is placed
at the lowest level of the hierarchy. The lesser the number of distinct values an attribute has, the higher it is
in the generated concept hierarchy. This heuristic rule works �ne in many cases. Some local level swapping
or adjustments may be performed by users or experts, when necessary, after examination of the generated
hierarchy.

Let's examine an example of this method.

Example 3.6 Suppose a user selects a set of attributes, street, country, province or state, and city, for a
dimension location from the database AllElectronics, but does not specify the hierarchical ordering among the
attributes.

The concept hierarchy for location can be generated automatically as follows. First, sort the attributes in
ascending order based on the number of distinct values in each attribute. This results in the following (where
the number of distinct values per attribute is shown in parentheses): country (15), province or state (65), city
(3567), and street (674,339). Second, generate the hierarchy from top down according to the sorted order,
with the �rst attribute at the top-level and the last attribute at the bottom-level. The resulting hierarchy is
shown in Figure 3.15. Finally, the user examines the generated hierarchy, and when necessary, modi�es it to
re
ect desired semantic relationship among the attributes. In this example, it is obvious that there is no need
to modify the generated hierarchy. 2

Note that this heristic rule cannot be pushed to the extreme since there are obvious cases which do not follow
such a heuristic. For example, a time dimension in a database may contain 20 distinct years, 12 distinct months
and 7 distinct days of the week. However, this does not suggest that the time hierarchy should be \year <

month < days of the week", with days of the week at the top of the hierarchy.

4. Speci�cation of only a partial set of attributes.
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Sometimes a user can be sloppy when de�ning a hierarchy, or may have only a vague idea about what should be
included in a hierarchy. Consequently, the user may have included only a small subset of the relevant attributes
in a hierarchy speci�cation. For example, instead of including all the hierarchically relevant attributes for
location, one may specify only street and city. To handle such partially speci�ed hierarchies, it is important to
embed data semantics in the database schema so that attributes with tight semantic connections can be pinned
together. In this way, the speci�cation of one attribute may trigger a whole group of semantically tightly linked
attributes to be \dragged-in" to form a complete hierarchy. Users, however, should have the option to over-ride
this feature, as necessary.

Example 3.7 Suppose that a database system has pinned together the �ve attributes, number, street, city,
province or state, and country, because they are closely linked semantically, regarding the notion of location.
If a user were to specify only the attribute city for a hierarchy de�ning location, the system may automatically
drag all of the above �ve semantically-related attributes to form a hierarchy. The user may choose to drop any
of these attributes, such as number and street, from the hierarchy, keeping city as the lowest conceptual level
in the hierarchy. 2

3.6 Summary

� Data preparation is an important issue for both data warehousing and data mining, as real-world data tends
to be incomplete, noisy, and inconsistent. Data preparation includes data cleaning, data integration, data
transformation, and data reduction.

� Data cleaning routines can be used to �ll in missing values, smooth noisy data, identify outliers, and correct
data inconsistencies.

� Data integration combines data from multiples sources to form a coherent data store. Metadata, correlation
analysis, data con
ict detection, and the resolution of semantic heterogeneity contribute towards smooth data
integration.

� Data transformation routines conform the data into appropriate forms for mining. For example, attribute
data may be normalized so as to fall between a small range, such as 0 to 1.0.

� Data reduction techniques such as data cube aggregation, dimension reduction, data compression, numerosity
reduction, and discretization can be used to obtain a reduced representation of the data, while minimizing the
loss of information content.

� Concept hierarchies organize the values of attributes or dimensions into gradual levels of abstraction. They
are a form a discretization that is particularly useful in multilevel mining.

� Automatic generation of concept hierarchies for categoric data may be based on the number of distinct
values of the attributes de�ning the hierarchy. For numeric data, techniques such as data segmentation by
partition rules, histogram analysis, and clustering analysis can be used.

� Although several methods of data preparation have been developed, data preparation remains an active area
of research.

Exercises

1. Data quality can be assessed in terms of accuracy, completeness, and consistency. Propose two other dimensions
of data quality.

2. In real-world data, tuples with missing values for some attributes are a common occurrence. Describe various
methods for handling this problem.

3. Suppose that the data for analysis includes the attribute age. The age values for the data tuples are (in
increasing order):

13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70.
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(a) Use smoothing by bin means to smooth the above data, using a bin depth of 3. Illustrate your steps.
Comment on the e�ect of this technique for the given data.

(b) How might you determine outliers in the data?

(c) What other methods are there for data smoothing?

4. Discuss issues to consider during data integration.

5. Using the data for age given in Question 3, answer the following:

(a) Use min-max normalization to transform the value 35 for age onto the range [0; 1].

(b) Use z-score normalization to transform the value 35 for age, where the standard deviation of age is ??.

(c) Use normalization by decimal scaling to transform the value 35 for age.

(d) Comment on which method you would prefer to use for the given data, giving reasons as to why.

6. Use a 
ow-chart to illustrate the following procedures for attribute subset selection:

(a) step-wise forward selection.

(b) step-wise backward elimination

(c) a combination of forward selection and backward elimination.

7. Using the data for age given in Question 3:

(a) Plot an equi-width histogram of width 10.

(b) Sketch examples of each of the following sample techniques: SRSWOR, SRSWR, cluster sampling, strat-
i�ed sampling.

8. Propose a concept hierarchy for the attribute age using the 3-4-5 partition rule.

9. Propose an algorithm, in pseudo-code or in your favorite programming language, for

(a) the automatic generation of a concept hierarchy for categorical data based on the number of distinct values
of attributes in the given schema,

(b) the automatic generation of a concept hierarchy for numeric data based on the equi-width partitioning
rule, and

(c) the automatic generation of a concept hierarchy for numeric data based on the equi-depth partitioning
rule.

Bibliographic Notes

Data preprocessing is discussed in a number of textbooks, including Pyle [28], Kennedy et al. [21], and Weiss and
Indurkhya [37]. More speci�c references to individual preprocessing techniques are given below.

For discussion regarding data quality, see Ballou and Tayi [3], Redman [31], Wand and Wang [35], and Wang,
Storey and Firth [36]. The handling of missing attribute values is discussed in Quinlan [29], Breiman et al. [5], and
Friedman [11]. A method for the detection of outlier or \garbage" patterns in a handwritten character database
is given in Guyon, Matic, and Vapnik [14]. Binning and data normalization are treated in several texts, including
[28, 21, 37].

A good survey of data reduction techniques can be found in Barbar�a et al. [4]. For algorithms on data cubes
and their precomputation, see [33, 16, 1, 38, 32]. Greedy methods for attribute subset selection (or feature subset
selection) are described in several texts, such as Neter et al. [24], and John [18]. A combination forward selection
and backward elimination method was proposed in Siedlecki and Sklansky [34]. For a description of wavelets for
data compression, see Press et al. [27]. Daubechies transforms are described in Daubechies [6]. The book by Press
et al. [27] also contains an introduction to singular value decomposition for principal components analysis.

An introduction to regression and log-linear models can be found in several textbooks, such as [17, 9, 20, 8, 24].
For log-linear models (known as multiplicative models in the computer science literature), see Pearl [25]. For a
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general introduction to histograms, see [7, 4]. For extensions of single attribute histograms to multiple attributes,
see Muralikrishna and DeWitt [23], and Poosala and Ioannidis [26]. Several references to clustering algorithms are
given in Chapter 7 of this book, which is devoted to this topic. A survey of multidimensional indexing structures is
in Gaede and G�unther [12]. The use of multidimensional index trees for data aggregation is discussed in Aoki [2].
Index trees include R-trees (Guttman [13]), quad-trees (Finkel and Bentley [10]), and their variations. For discussion
on sampling and data mining, see John and Langley [19], and Kivinen and Mannila [22].

Entropy and information gain are described in Quinlan [30]. Concept hierarchies, and their automatic generation
from categorical data are described in Han and Fu [15].
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