
Contents

2 Data Warehouse and OLAP Technology for Data Mining 3

2.1 What is a data warehouse? . 3

2.2 A multidimensional data model . 6

2.2.1 From tables to data cubes . 6

2.2.2 Stars, snowakes, and fact constellations: schemas for multidimensional databases 8

2.2.3 Examples for de�ning star, snowake, and fact constellation schemas 11

2.2.4 Measures: their categorization and computation . 13

2.2.5 Introducing concept hierarchies . 14

2.2.6 OLAP operations in the multidimensional data model . 15

2.2.7 A starnet query model for querying multidimensional databases 18

2.3 Data warehouse architecture . 19

2.3.1 Steps for the design and construction of data warehouses . 19

2.3.2 A three-tier data warehouse architecture . 20

2.3.3 OLAP server architectures: ROLAP vs. MOLAP vs. HOLAP 22

2.3.4 SQL extensions to support OLAP operations . 24

2.4 Data warehouse implementation . 24

2.4.1 E�cient computation of data cubes . 25

2.4.2 Indexing OLAP data . 30

2.4.3 E�cient processing of OLAP queries . 30

2.4.4 Metadata repository . 31

2.4.5 Data warehouse back-end tools and utilities . 32

2.5 Further development of data cube technology . 32

2.5.1 Discovery-driven exploration of data cubes . 33

2.5.2 Complex aggregation at multiple granularities: Multifeature cubes 36

2.6 From data warehousing to data mining . 38

2.6.1 Data warehouse usage . 38

2.6.2 From on-line analytical processing to on-line analytical mining 39

2.7 Summary . 41

1

Bzupages.com

2 CONTENTS

Chapter 2

Data Warehouse and OLAP Technology

for Data Mining

cJ. Han and M. Kamber, 1998, DRAFT!! DO NOT COPY!! DO NOT DISTRIBUTE!! September 7, 1999

The construction of data warehouses, which involves data cleaning and data integration, can be viewed as an
important preprocessing step for data mining. Moreover, data warehouses provide on-line analytical processing

(OLAP) tools for the interactive analysis of multidimensional data of varied granularities, which facilitates e�ective
data mining. Furthermore, many other data mining functions such as classi�cation, prediction, association, and
clustering, can be integrated with OLAP operations to enhance interactive mining of knowledge at multiple levels
of abstraction. Hence, data warehouse has become an increasingly important platform for data analysis and on-
line analytical processing and will provide an e�ective platform for data mining. Therefore, prior to presenting a
systematic coverage of data mining technology in the remainder of this book, we devote this chapter to an overview
of data warehouse technology. Such an overview is essential for understanding data mining technology.

In this chapter, you will learn the basic concepts, general architectures, and major implementation techniques
employed in data warehouse and OLAP technology, as well as their relationship with data mining.

2.1 What is a data warehouse?

Data warehousing provides architectures and tools for business executives to systematically organize, understand,
and use their data to make strategic decisions. A large number of organizations have found that data warehouse
systems are valuable tools in today's competitive, fast evolving world. In the last several years, many �rms have spent
millions of dollars in building enterprise-wide data warehouses. Many people feel that with competition mounting in
every industry, data warehousing is the latest must-have marketing weapon | a way to keep customers by learning
more about their needs.

\So", you may ask, full of intrigue, \what exactly is a data warehouse?"

Data warehouses have been de�ned in many ways, making it di�cult to formulate a rigorous de�nition. Loosely
speaking, a data warehouse refers to a database that is maintained separately from an organization's operational
databases. Data warehouse systems allow for the integration of a variety of application systems. They support
information processing by providing a solid platform of consolidated, historical data for analysis.

According toW. H. Inmon, a leading architect in the construction of data warehouse systems, \a data warehouse
is a subject-oriented, integrated, time-variant, and nonvolatile collection of data in support of management's
decision making process." (Inmon 1992). This short, but comprehensive de�nition presents the major features of
a data warehouse. The four keywords, subject-oriented, integrated, time-variant, and nonvolatile, distinguish data
warehouses from other data repository systems, such as relational database systems, transaction processing systems,
and �le systems. Let's take a closer look at each of these key features.

� Subject-oriented: A data warehouse is organized around major subjects, such as customer, vendor, product,
and sales. Rather than concentrating on the day-to-day operations and transaction processing of an orga-
nization, a data warehouse focuses on the modeling and analysis of data for decision makers. Hence, data

3

4 CHAPTER 2. DATA WAREHOUSE AND OLAP TECHNOLOGY FOR DATA MINING

warehouses typically provide a simple and concise view around particular subject issues by excluding data that
are not useful in the decision support process.

� Integrated: A data warehouse is usually constructed by integrating multiple heterogeneous sources, such as
relational databases, at �les, and on-line transaction records. Data cleaning and data integration techniques
are applied to ensure consistency in naming conventions, encoding structures, attribute measures, and so on.

� Time-variant: Data are stored to provide information from a historical perspective (e.g., the past 5-10 years).
Every key structure in the data warehouse contains, either implicitly or explicitly, an element of time.

� Nonvolatile: A data warehouse is always a physically separate store of data transformed from the application
data found in the operational environment. Due to this separation, a data warehouse does not require transac-
tion processing, recovery, and concurrency control mechanisms. It usually requires only two operations in data
accessing: initial loading of data and access of data.

In sum, a data warehouse is a semantically consistent data store that serves as a physical implementation of a
decision support data model and stores the information on which an enterprise needs to make strategic decisions. A
data warehouse is also often viewed as an architecture, constructed by integrating data from multiple heterogeneous
sources to support structured and/or ad hoc queries, analytical reporting, and decision making.

\OK", you now ask, \what, then, is data warehousing?"

Based on the above, we view data warehousing as the process of constructing and using data warehouses. The
construction of a data warehouse requires data integration, data cleaning, and data consolidation. The utilization of
a data warehouse often necessitates a collection of decision support technologies. This allows \knowledge workers"
(e.g., managers, analysts, and executives) to use the warehouse to quickly and conveniently obtain an overview of
the data, and to make sound decisions based on information in the warehouse. Some authors use the term \data
warehousing" to refer only to the process of data warehouse construction, while the term warehouse DBMS is
used to refer to the management and utilization of data warehouses. We will not make this distinction here.

\How are organizations using the information from data warehouses?" Many organizations are using this in-
formation to support business decision making activities, including (1) increasing customer focus, which includes
the analysis of customer buying patterns (such as buying preference, buying time, budget cycles, and appetites for
spending), (2) repositioning products and managing product portfolios by comparing the performance of sales by
quarter, by year, and by geographic regions, in order to �ne-tune production strategies, (3) analyzing operations and
looking for sources of pro�t, and (4) managing the customer relationships, making environmental corrections, and
managing the cost of corporate assets.

Data warehousing is also very useful from the point of view of heterogeneous database integration. Many organiza-
tions typically collect diverse kinds of data and maintain large databases from multiple, heterogeneous, autonomous,
and distributed information sources. To integrate such data, and provide easy and e�cient access to it is highly
desirable, yet challenging. Much e�ort has been spent in the database industry and research community towards
achieving this goal.

The traditional database approach to heterogeneous database integration is to build wrappers and integrators
(or mediators) on top of multiple, heterogeneous databases. A variety of data joiner and data blade products
belong to this category. When a query is posed to a client site, a metadata dictionary is used to translate the
query into queries appropriate for the individual heterogeneous sites involved. These queries are then mapped and
sent to local query processors. The results returned from the di�erent sites are integrated into a global answer set.
This query-driven approach requires complex information �ltering and integration processes, and competes for
resources with processing at local sources. It is ine�cient and potentially expensive for frequent queries, especially
for queries requiring aggregations.

Data warehousing provides an interesting alternative to the traditional approach of heterogeneous database inte-
gration described above. Rather than using a query-driven approach, data warehousing employs an update-driven
approach in which information from multiple, heterogeneous sources is integrated in advance and stored in a ware-
house for direct querying and analysis. Unlike on-line transaction processing databases, data warehouses do not
contain the most current information. However, a data warehouse brings high performance to the integrated hetero-
geneous database system since data are copied, preprocessed, integrated, annotated, summarized, and restructured
into one semantic data store. Furthermore, query processing in data warehouses does not interfere with the process-
ing at local sources. Moreover, data warehouses can store and integrate historical information and support complex
multidimensional queries. As a result, data warehousing has become very popular in industry.

2.1. WHAT IS A DATA WAREHOUSE? 5

Di�erences between operational database systems and data warehouses

Since most people are familiar with commercial relational database systems, it is easy to understand what a data
warehouse is by comparing these two kinds of systems.

The major task of on-line operational database systems is to perform on-line transaction and query processing.
These systems are called on-line transaction processing (OLTP) systems. They cover most of the day-to-
day operations of an organization, such as, purchasing, inventory, manufacturing, banking, payroll, registration,
and accounting. Data warehouse systems, on the other hand, serve users or \knowledge workers" in the role of
data analysis and decision making. Such systems can organize and present data in various formats in order to
accommodate the diverse needs of the di�erent users. These systems are known as on-line analytical processing
(OLAP) systems.

The major distinguishing features between OLTP and OLAP are summarized as follows.

1. Users and system orientation: An OLTP system is customer-oriented and is used for transaction and query
processing by clerks, clients, and information technology professionals. An OLAP system is market-oriented
and is used for data analysis by knowledge workers, including managers, executives, and analysts.

2. Data contents: An OLTP system manages current data that, typically, are too detailed to be easily used for
decision making. An OLAP system manages large amounts of historical data, provides facilities for summa-
rization and aggregation, and stores and manages information at di�erent levels of granularity. These features
make the data easier for use in informed decision making.

3. Database design: An OLTP system usually adopts an entity-relationship (ER) data model and an application-
oriented database design. An OLAP system typically adopts either a star or snowake model (to be discussed
in Section 2.2.2), and a subject-oriented database design.

4. View: An OLTP system focuses mainly on the current data within an enterprise or department, without
referring to historical data or data in di�erent organizations. In contrast, an OLAP system often spans multiple
versions of a database schema, due to the evolutionary process of an organization. OLAP systems also deal
with information that originates from di�erent organizations, integrating information from many data stores.
Because of their huge volume, OLAP data are stored on multiple storage media.

5. Access patterns: The access patterns of an OLTP system consist mainly of short, atomic transactions. Such
a system requires concurrency control and recovery mechanisms. However, accesses to OLAP systems are
mostly read-only operations (since most data warehouses store historical rather than up-to-date information),
although many could be complex queries.

Other features which distinguish between OLTP and OLAP systems include database size, frequency of operations,
and performance metrics. These are summarized in Table 2.1.

But, why have a separate data warehouse?

\Since operational databases store huge amounts of data", you observe, \why not perform on-line analytical

processing directly on such databases instead of spending additional time and resources to construct a separate data

warehouse?"

A major reason for such a separation is to help promote the high performance of both systems. An operational
database is designed and tuned from known tasks and workloads, such as indexing and hashing using primary keys,
searching for particular records, and optimizing \canned" queries. On the other hand, data warehouse queries are
often complex. They involve the computation of large groups of data at summarized levels, and may require the
use of special data organization, access, and implementation methods based on multidimensional views. Processing
OLAP queries in operational databases would substantially degrade the performance of operational tasks.

Moreover, an operational database supports the concurrent processing of several transactions. Concurrency
control and recovery mechanisms, such as locking and logging, are required to ensure the consistency and robustness
of transactions. An OLAP query often needs read-only access of data records for summarization and aggregation.
Concurrency control and recovery mechanisms, if applied for such OLAP operations, may jeopardize the execution
of concurrent transactions and thus substantially reduce the throughput of an OLTP system.

6 CHAPTER 2. DATA WAREHOUSE AND OLAP TECHNOLOGY FOR DATA MINING

Feature OLTP OLAP

Characteristic operational processing informational processing
Orientation transaction analysis
User clerk, DBA, database professional knowledge worker (e.g., manager, executive, analyst)
Function day-to-day operations long term informational requirements,

decision support
DB design E-R based, application-oriented star/snowake, subject-oriented
Data current; guaranteed up-to-date historical; accuracy maintained over time
Summarization primitive, highly detailed summarized, consolidated
View detailed, at relational summarized, multidimensional
Unit of work short, simple transaction complex query
Access read/write mostly read
Focus data in information out
Operations index/hash on primary key lots of scans
of records accessed tens millions
of users thousands hundreds
DB size 100 MB to GB 100 GB to TB
Priority high performance, high availability high exibility, end-user autonomy
Metric transaction throughput query throughput, response time

Table 2.1: Comparison between OLTP and OLAP systems.

Finally, the separation of operational databases from data warehouses is based on the di�erent structures, contents,
and uses of the data in these two systems. Decision support requires historical data, whereas operational databases
do not typically maintain historical data. In this context, the data in operational databases, though abundant, is
usually far from complete for decision making. Decision support requires consolidation (such as aggregation and
summarization) of data from heterogeneous sources, resulting in high quality, cleansed and integrated data. In
contrast, operational databases contain only detailed raw data, such as transactions, which need to be consolidated
before analysis. Since the two systems provide quite di�erent functionalities and require di�erent kinds of data, it is
necessary to maintain separate databases.

2.2 A multidimensional data model

Data warehouses and OLAP tools are based on a multidimensional data model. This model views data in the
form of a data cube. In this section, you will learn how data cubes model n-dimensional data. You will also learn
about concept hierarchies and how they can be used in basic OLAP operations to allow interactive mining at multiple
levels of abstraction.

2.2.1 From tables to data cubes

\What is a data cube?"

A data cube allows data to be modeled and viewed in multiple dimensions. It is de�ned by dimensions and
facts.

In general terms, dimensions are the perspectives or entities with respect to which an organization wants to
keep records. For example, AllElectronics may create a sales data warehouse in order to keep records of the store's
sales with respect to the dimensions time, item, branch, and location. These dimensions allow the store to keep track
of things like monthly sales of items, and the branches and locations at which the items were sold. Each dimension
may have a table associated with it, called a dimension table, which further describes the dimension. For example,
a dimension table for item may contain the attributes item name, brand, and type. Dimension tables can be speci�ed
by users or experts, or automatically generated and adjusted based on data distributions.

A multidimensional data model is typically organized around a central theme, like sales, for instance. This theme

2.2. A MULTIDIMENSIONAL DATA MODEL 7

is represented by a fact table. Facts are numerical measures. Think of them as the quantities by which we want to
analyze relationships between dimensions. Examples of facts for a sales data warehouse include dollars sold (sales
amount in dollars), units sold (number of units sold), and amount budgeted. The fact table contains the names of
the facts, or measures, as well as keys to each of the related dimension tables. You will soon get a clearer picture of
how this works when we later look at multidimensional schemas.

Although we usually think of cubes as 3-D geometric structures, in data warehousing the data cube is n-
dimensional. To gain a better understanding of data cubes and the multidimensional data model, let's start by
looking at a simple 2-D data cube which is, in fact, a table for sales data from AllElectronics. In particular, we will
look at the AllElectronics sales data for items sold per quarter in the city of Vancouver. These data are shown in
Table 2.2. In this 2-D representation, the sales for Vancouver are shown with respect to the time dimension (orga-
nized in quarters) and the item dimension (organized according to the types of items sold). The fact, or measure
displayed is dollars sold.

Sales for all locations in Vancouver
time (quarter) item (type)

home computer phone security
entertainment

Q1 605K 825K 14K 400K
Q2 680K 952K 31K 512K
Q3 812K 1023K 30K 501K
Q4 927K 1038K 38K 580K

Table 2.2: A 2-D view of sales data for AllElectronics according to the dimensions time and item, where the sales
are from branches located in the city of Vancouver. The measure displayed is dollars sold.

location = \Vancouver" location = \Montreal" location = \New York" location = \Chicago"

t item item item item

i home comp. phone sec. home comp. phone sec. home comp. phone sec. home comp. phone sec.

m ent. ent. ent. ent.
e

Q1 605K 825K 14K 400K 818K 746K 43K 591K 1087K 968K 38K 872K 854K 882K 89K 623K
Q2 680K 952K 31K 512K 894K 769K 52K 682K 1130K 1024K 41K 925K 943K 890K 64K 698K
Q3 812K 1023K 30K 501K 940K 795K 58K 728K 1034K 1048K 45K 1002K 1032K 924K 59K 789K

Q4 927K 1038K 38K 580K 978K 864K 59K 784K 1142K 1091K 54K 984K 1129K 992K 63K 870K

Table 2.3: A 3-D view of sales data for AllElectronics, according to the dimensions time, item, and location. The
measure displayed is dollars sold.

Now, suppose that we would like to view the sales data with a third dimension. For instance, suppose we would
like to view the data according to time, item, as well as location. These 3-D data are shown in Table 2.3. The 3-D
data of Table 2.3 are represented as a series of 2-D tables. Conceptually, we may also represent the same data in the
form of a 3-D data cube, as in Figure 2.1.

Suppose that we would now like to view our sales data with an additional fourth dimension, such as supplier.
Viewing things in 4-D becomes tricky. However, we can think of a 4-D cube as being a series of 3-D cubes, as shown
in Figure 2.2. If we continue in this way, we may display any n-D data as a series of (n � 1)-D \cubes". The data
cube is a metaphor for multidimensional data storage. The actual physical storage of such data may di�er from its
logical representation. The important thing to remember is that data cubes are n-dimensional, and do not con�ne
data to 3-D.

The above tables show the data at di�erent degrees of summarization. In the data warehousing research literature,
a data cube such as each of the above is referred to as a cuboid. Given a set of dimensions, we can construct a
lattice of cuboids, each showing the data at a di�erent level of summarization, or group by (i.e., summarized by a
di�erent subset of the dimensions). The lattice of cuboids is then referred to as a data cube. Figure 2.8 shows a
lattice of cuboids forming a data cube for the dimensions time, item, location, and supplier.

8 CHAPTER 2. DATA WAREHOUSE AND OLAP TECHNOLOGY FOR DATA MINING

870

925

789

698

984

1002

682

784

728

623

872

591

89

38

43

882

968

746

854

1087

818

580381038927

501301023812

51231952680

Q1

Q2

Q3

Q4

New York

Montreal

(quarters)

Chicago
(cities)
location

14K825K 400K605K

time

security

phone

computer

item
(types)

entertainment
home

Vancouver

Figure 2.1: A 3-D data cube representation of the data in Table 2.3, according to the dimensions time, item, and
location. The measure displayed is dollars sold.

home
entertainment

(types)
item

computer

phone

security

home
entertainment

(types)
item

computer

phone

security

home
entertainment

(types)
item

computer

phone

security

time
(quarters)

Q1

Q2

Q3

Q4

14K825K605K 400K

New York

Montreal

Vancouver

Chicago
(cities)
location "SUP1" "SUP2" "SUP3"supplier = supplier = supplier =

Figure 2.2: A 4-D data cube representation of sales data, according to the dimensions time, item, location, and
supplier. The measure displayed is dollars sold.

The cuboid which holds the lowest level of summarization is called the base cuboid. For example, the 4-D
cuboid in Figure 2.2 is the base cuboid for the given time, item, location, and supplier dimensions. Figure 2.1 is a
3-D (non-base) cuboid for time, item, and location, summarized for all suppliers. The 0-D cuboid which holds the
highest level of summarization is called the apex cuboid. In our example, this is the total sales, or dollars sold,
summarized for all four dimensions. The apex cuboid is typically denoted by all.

2.2.2 Stars, snowakes, and fact constellations: schemas for multidimensional databases

The entity-relationship data model is commonly used in the design of relational databases, where a database schema
consists of a set of entities or objects, and the relationships between them. Such a data model is appropriate for on-
line transaction processing. Data warehouses, however, require a concise, subject-oriented schema which facilitates
on-line data analysis.

The most popular data model for data warehouses is a multidimensional model. This model can exist in the
form of a star schema, a snowake schema, or a fact constellation schema. Let's have a look at each of these
schema types.

2.2. A MULTIDIMENSIONAL DATA MODEL 9

all

item location suppliertime

time, supplier item, supplier

time, location

time, item

item, location location, supplier

time, item, location

item, location, suppliertime, item, supplier

time, location, supplier

1-D cuboids

0-D (apex) cuboid

3-D cuboids

2-D cuboids

4-D (base) cuboiditem, item, location, supplier

Figure 2.3: Lattice of cuboids, making up a 4-D data cube for the dimensions time, item, location, and supplier.
Each cuboid represents a di�erent degree of summarization.

� Star schema: The star schema is a modeling paradigm in which the data warehouse contains (1) a large central
table (fact table), and (2) a set of smaller attendant tables (dimension tables), one for each dimension. The
schema graph resembles a starburst, with the dimension tables displayed in a radial pattern around the central
fact table.

Sales FactTime Dimension
year
quarter
month
day_of_week
day
time_key

Location Dimension

country

city
street
location_key

Branch Dimension

branch_key

branch_key

Item Dimension

province_or_state

item_key

time_key

branch_type

item_key

brand
item_name

type
supplier_type

branch_name

location_key

dollars_sold
units_sold

Figure 2.4: Star schema of a data warehouse for sales.

Example 2.1 An example of a star schema for AllElectronics sales is shown in Figure 2.4. Sales are considered
along four dimensions, namely time, item, branch, and location. The schema contains a central fact table for
sales which contains keys to each of the four dimensions, along with two measures: dollars sold and units sold.

2

Notice that in the star schema, each dimension is represented by only one table, and each table contains a
set of attributes. For example, the location dimension table contains the attribute set flocation key, street,

10 CHAPTER 2. DATA WAREHOUSE AND OLAP TECHNOLOGY FOR DATA MINING

city, province or state, countryg. This constraint may introduce some redundancy. For example, \Vancou-
ver" and \Victoria" are both cities in the Canadian province of British Columbia. Entries for such cities in
the location dimension table will create redundancy among the attributes province or state and country, i.e.,
(.., Vancouver, British Columbia, Canada) and (.., Victoria, British Columbia, Canada). More-
over, the attributes within a dimension table may form either a hierarchy (total order) or a lattice (partial
order).

� Snowake schema: The snowake schema is a variant of the star schema model, where some dimension tables
are normalized, thereby further splitting the data into additional tables. The resulting schema graph forms a
shape similar to a snowake.

The major di�erence between the snowake and star schemamodels is that the dimension tables of the snowake
model may be kept in normalized form. Such a table is easy to maintain and also saves storage space because
a large dimension table can be extremely large when the dimensional structure is included as columns. Since
much of this space is redundant data, creating a normalized structure will reduce the overall space requirement.
However, the snowake structure can reduce the e�ectiveness of browsing since more joins will be needed to
execute a query. Consequently, the system performance may be adversely impacted. Performance benchmarking
can be used to determine what is best for your design.

time_key

Sales FactTime Dimension

month

time_key
Location Dimension

supplier_key
Supplier Dimension

supplier_type

location_key

city_key country
City Dimension

year

day_of_week

street

city_key
city

supplier_key

location_key

dollars_sold
units_sold

quarter

day

Branch Dimension

branch_type
branch_name
branch_key

item_key

branch_key

Item Dimension

province_or_state

type

item_key

brand
item_name

Figure 2.5: Snowake schema of a data warehouse for sales.

Example 2.2 An example of a snowake schema for AllElectronics sales is given in Figure 2.5. Here, the sales
fact table is identical to that of the star schema in Figure 2.4. The main di�erence between the two schemas
is in the de�nition of dimension tables. The single dimension table for item in the star schema is normalized
in the snowake schema, resulting in new item and supplier tables. For example, the item dimension table
now contains the attributes supplier key, type, brand, item name, and item key, the latter of which is linked
to the supplier dimension table, containing supplier type and supplier key information. Similarly, the single
dimension table for location in the star schema can be normalized into two tables: new location and city. The
location key of the new location table now links to the city dimension. Notice that further normalization can
be performed on province or state and country in the snowake schema shown in Figure 2.5, when desirable.

2

A compromise between the star schema and the snowake schema is to adopt a mixed schema where only
the very large dimension tables are normalized. Normalizing large dimension tables saves storage space, while
keeping small dimension tables unnormalized may reduce the cost and performance degradation due to joins on
multiple dimension tables. Doing both may lead to an overall performance gain. However, careful performance
tuning could be required to determine which dimension tables should be normalized and split into multiple
tables.

� Fact constellation: Sophisticated applications may require multiple fact tables to share dimension tables.
This kind of schema can be viewed as a collection of stars, and hence is called a galaxy schema or a fact
constellation.

2.2. A MULTIDIMENSIONAL DATA MODEL 11

time_key

Sales Fact

units_sold

dollars_sold
location_key

brand

Shipper Dimension

shipper_key
from_location
to_location

Time Dimension
year
quarter
month

time_key

day_of_week
day

location_key
street
city

country
Location Dimension

Shipping Fact
shipper_type
location_key

Branch Dimension

branch_type
branch_name
branch_key

item_key

branch_key

item_name

Item Dimension

item_key

province_or_state

shipper_name
shipper_key

type
time_key
item_key

dollars_cost
units_shipped

Figure 2.6: Fact constellation schema of a data warehouse for sales and shipping.

Example 2.3 An example of a fact constellation schema is shown in Figure 2.6. This schema speci�es two
fact tables, sales and shipping. The sales table de�nition is identical to that of the star schema (Figure 2.4).
The shipping table has �ve dimensions, or keys: time key, item key, shipper key, from location, and to location,
and two measures: dollars cost and units shipped. A fact constellation schema allows dimension tables to be
shared between fact tables. For example, the dimensions tables for time, item, and location, are shared between
both the sales and shipping fact tables. 2

In data warehousing, there is a distinction between a data warehouse and a data mart. A data warehouse

collects information about subjects that span the entire organization, such as customers, items, sales, assets, and
personnel, and thus its scope is enterprise-wide. For data warehouses, the fact constellation schema is commonly
used since it can model multiple, interrelated subjects. A data mart, on the other hand, is a department subset
of the data warehouse that focuses on selected subjects, and thus its scope is department-wide. For data marts, the
star or snowake schema are popular since each are geared towards modeling single subjects.

2.2.3 Examples for de�ning star, snowake, and fact constellation schemas

\How can I de�ne a multidimensional schema for my data?"

Just as relational query languages like SQL can be used to specify relational queries, a data mining query

language can be used to specify data mining tasks. In particular, we examine an SQL-based data mining query
language called DMQL which contains language primitives for de�ning data warehouses and data marts. Language
primitives for specifying other data mining tasks, such as the mining of concept/class descriptions, associations,
classi�cations, and so on, will be introduced in Chapter 4.

Data warehouses and data marts can be de�ned using two language primitives, one for cube de�nition and one
for dimension de�nition. The cube de�nition statement has the following syntax.

de�ne cube hcube namei [hdimension listi] : hmeasure listi

The dimension de�nition statement has the following syntax.

de�ne dimension hdimension namei as (hattribute or subdimension listi)

Let's look at examples of how to de�ne the star, snowake and constellations schemas of Examples 2.1 to 2.3
using DMQL. DMQL keywords are displayed in sans serif font.

12 CHAPTER 2. DATA WAREHOUSE AND OLAP TECHNOLOGY FOR DATA MINING

Example 2.4 The star schema of Example 2.1 and Figure 2.4 is de�ned in DMQL as follows.

de�ne cube sales star [time, item, branch, location]:
dollars sold = sum(sales in dollars), units sold = count(*)

de�ne dimension time as (time key, day, day of week, month, quarter, year)
de�ne dimension item as (item key, item name, brand, type, supplier type)
de�ne dimension branch as (branch key, branch name, branch type)
de�ne dimension location as (location key, street, city, province or state, country)

The de�ne cube statement de�nes a data cube called sales star, which corresponds to the central sales fact table
of Example 2.1. This command speci�es the keys to the dimension tables, and the two measures, dollars sold and
units sold. The data cube has four dimensions, namely time, item, branch, and location. A de�ne dimension statement
is used to de�ne each of the dimensions. 2

Example 2.5 The snowake schema of Example 2.2 and Figure 2.5 is de�ned in DMQL as follows.

de�ne cube sales snowake [time, item, branch, location]:
dollars sold = sum(sales in dollars), units sold = count(*)

de�ne dimension time as (time key, day, day of week, month, quarter, year)
de�ne dimension item as (item key, item name, brand, type, supplier (supplier key, supplier type))
de�ne dimension branch as (branch key, branch name, branch type)
de�ne dimension location as (location key, street, city (city key, city, province or state, country))

This de�nition is similar to that of sales star (Example 2.4), except that, here, the item and location dimensions
tables are normalized. For instance, the item dimension of the sales star data cube has been normalized in the
sales snowake cube into two dimension tables, item and supplier. Note that the dimension de�nition for supplier
is speci�ed within the de�nition for item. De�ning supplier in this way implicitly creates a supplier key in the item
dimension table de�nition. Similarly, the location dimension of the sales star data cube has been normalized in the
sales snowake cube into two dimension tables, location and city. The dimension de�nition for city is speci�ed within
the de�nition for location. In this way, a city key is implicitly created in the location dimension table de�nition. 2

Finally, a fact constellation schema can be de�ned as a set of interconnected cubes. Below is an example.

Example 2.6 The fact constellation schema of Example 2.3 and Figure 2.6 is de�ned in DMQL as follows.

de�ne cube sales [time, item, branch, location]:
dollars sold = sum(sales in dollars), units sold = count(*)

de�ne dimension time as (time key, day, day of week, month, quarter, year)
de�ne dimension item as (item key, item name, brand, type)
de�ne dimension branch as (branch key, branch name, branch type)
de�ne dimension location as (location key, street, city, province or state, country)

de�ne cube shipping [time, item, shipper, from location, to location]:
dollars cost = sum(cost in dollars), units shipped = count(*)

de�ne dimension time as time in cube sales
de�ne dimension item as item in cube sales
de�ne dimension shipper as (shipper key, shipper name, location as location in cube sales, shipper type)
de�ne dimension from location as location in cube sales
de�ne dimension to location as location in cube sales

A de�ne cube statement is used to de�ne data cubes for sales and shipping, corresponding to the two fact tables
of the schema of Example 2.3. Note that the time, item, and location dimensions of the sales cube are shared with
the shipping cube. This is indicated for the time dimension, for example, as follows. Under the de�ne cube statement
for shipping, the statement \de�ne dimension time as time in cube sales" is speci�ed. 2

Instead of having users or experts explicitly de�ne data cube dimensions, dimensions can be automatically gen-
erated or adjusted based on the examination of data distributions. DMQL primitives for specifying such automatic
generation or adjustments are discussed in the following chapter.

2.2. A MULTIDIMENSIONAL DATA MODEL 13

2.2.4 Measures: their categorization and computation

\How are measures computed?"

To answer this question, we will �rst look at how measures can be categorized. Note that multidimensional points
in the data cube space are de�ned by dimension-value pairs. For example, the dimension-value pairs in htime=\Q1",
location=\Vancouver", item=\computer"i de�ne a point in data cube space. A data cube measure is a numerical
function that can be evaluated at each point in the data cube space. A measure value is computed for a given point
by aggregating the data corresponding to the respective dimension-value pairs de�ning the given point. We will look
at concrete examples of this shortly.

Measures can be organized into three categories, based on the kind of aggregate functions used.

� distributive: An aggregate function is distributive if it can be computed in a distributed manner as follows:
Suppose the data is partitioned into n sets. The computation of the function on each partition derives one
aggregate value. If the result derived by applying the function to the n aggregate values is the same as that
derived by applying the function on all the data without partitioning, the function can be computed in a
distributed manner. For example, count() can be computed for a data cube by �rst partitioning the cube
into a set of subcubes, computing count() for each subcube, and then summing up the counts obtained for
each subcube. Hence count() is a distributive aggregate function. For the same reason, sum(), min(), and
max() are distributive aggregate functions. A measure is distributive if it is obtained by applying a distributive
aggregate function.

� algebraic: An aggregate function is algebraic if it can be computed by an algebraic function with M argu-
ments (where M is a bounded integer), each of which is obtained by applying a distributive aggregate function.
For example, avg() (average) can be computed by sum()/count() where both sum() and count() are dis-
tributive aggregate functions. Similarly, it can be shown that min N(), max N(), and standard deviation()

are algebraic aggregate functions. A measure is algebraic if it is obtained by applying an algebraic aggregate
function.

� holistic: An aggregate function is holistic if there is no constant bound on the storage size needed to describe
a subaggregate. That is, there does not exist an algebraic function with M arguments (where M is a constant)
that characterizes the computation. Common examples of holistic functions include median(), mode() (i.e.,
the most frequently occurring item(s)), and rank(). A measure is holistic if it is obtained by applying a holistic
aggregate function.

Most large data cube applications require e�cient computation of distributive and algebraic measures. Many
e�cient techniques for this exist. In contrast, it can be di�cult to compute holistic measures e�ciently. E�cient
techniques to approximate the computation of some holistic measures, however, do exist. For example, instead of
computing the exact median(), there are techniques which can estimate the approximate median value for a large
data set with satisfactory results. In many cases, such techniques are su�cient to overcome the di�culties of e�cient
computation of holistic measures.

Example 2.7 Many measures of a data cube can be computed by relational aggregation operations. In Figure 2.4,
we saw a star schema for AllElectronics sales which contains two measures, namely dollars sold and units sold. In
Example 2.4, the sales star data cube corresponding to the schema was de�ned using DMQL commands. \But, how
are these commands interpreted in order to generate the speci�ed data cube?"

Suppose that the relational database schema of AllElectronics is the following:

time(time key, day, day of week, month, quarter, year)
item(item key, item name, brand, type)
branch(branch key, branch name, branch type)
location(location key, street, city, province or state, country)
sales(time key, item key, branch key, location key, number of units sold, price)

The DMQL speci�cation of Example 2.4 is translated into the following SQL query, which generates the required
sales star cube. Here, the sum aggregate function is used to compute both dollars sold and units sold.

14 CHAPTER 2. DATA WAREHOUSE AND OLAP TECHNOLOGY FOR DATA MINING

select s.time key, s.item key, s.branch key, s.location key,
sum(s.number of units sold � s.price), sum(s.number of units sold)

from time t, item i, branch b, location l, sales s,
where s.time key = t.time key and s.item key = i.item key

and s.branch key = b.branch key and s.location key = l.location key
group by s.time key, s.item key, s.branch key, s.location key

The cube created in the above query is the base cuboid of the sales star data cube. It contains all of the dimensions
speci�ed in the data cube de�nition, where the granularity of each dimension is at the join key level. A join key
is a key that links a fact table and a dimension table. The fact table associated with a base cuboid is sometimes
referred to as the base fact table.

By changing the group by clauses, we may generate other cuboids for the sales star data cube. For example,
instead of grouping by s.time key, we can group by t.month, which will sum up the measures of each group by
month. Also, removing \group by s.branch key" will generate a higher level cuboid (where sales are summed for all
branches, rather than broken down per branch). Suppose we modify the above SQL query by removing all of the
group by clauses. This will result in obtaining the total sum of dollars sold and the total count of units sold for the
given data. This zero-dimensional cuboid is the apex cuboid of the sales star data cube. In addition, other cuboids
can be generated by applying selection and/or projection operations on the base cuboid, resulting in a lattice of
cuboids as described in Section 2.2.1. Each cuboid corresponds to a di�erent degree of summarization of the given
data. 2

Most of the current data cube technology con�nes the measures of multidimensional databases to numerical data.
However, measures can also be applied to other kinds of data, such as spatial, multimedia, or text data. Techniques
for this are discussed in Chapter 9.

2.2.5 Introducing concept hierarchies

\What is a concept hierarchy?"

A concept hierarchy de�nes a sequence of mappings from a set of low level concepts to higher level, more
general concepts. Consider a concept hierarchy for the dimension location. City values for location include Vancouver,
Montreal, New York, and Chicago. Each city, however, can be mapped to the province or state to which it belongs.
For example, Vancouver can be mapped to British Columbia, and Chicago to Illinois. The provinces and states can
in turn be mapped to the country to which they belong, such as Canada or the USA. These mappings form a concept
hierarchy for the dimension location, mapping a set of low level concepts (i.e., cities) to higher level, more general
concepts (i.e., countries). The concept hierarchy described above is illustrated in Figure 2.7.

Many concept hierarchies are implicit within the database schema. For example, suppose that the dimension
location is described by the attributes number, street, city, province or state, zipcode, and country. These attributes
are related by a total order, forming a concept hierarchy such as \street < city < province or state < country". This
hierarchy is shown in Figure 2.8a). Alternatively, the attributes of a dimension may be organized in a partial order,
forming a lattice. An example of a partial order for the time dimension based on the attributes day, week, month,
quarter, and year is \day < fmonth <quarter; weekg < year" 1. This lattice structure is shown in Figure 2.8b).
A concept hierarchy that is a total or partial order among attributes in a database schema is called a schema

hierarchy. Concept hierarchies that are common to many applications may be prede�ned in the data mining
system, such as the the concept hierarchy for time. Data mining systems should provide users with the exibility
to tailor prede�ned hierarchies according to their particular needs. For example, one may like to de�ne a �scal year
starting on April 1, or an academic year starting on September 1.

Concept hierarchies may also be de�ned by discretizing or grouping values for a given dimension or attribute,
resulting in a set-grouping hierarchy. A total or partial order can be de�ned among groups of values. An example
of a set-grouping hierarchy is shown in Figure 2.9 for the dimension price.

There may be more than one concept hierarchy for a given attribute or dimension, based on di�erent user
viewpoints. For instance, a user may prefer to organize price by de�ning ranges for inexpensive, moderately priced,
and expensive.

1Since a week usually crosses the boundary of two consecutive months, it is usually not treated as a lower abstraction of month.

Instead, it is often treated as a lower abstraction of year, since a year contains approximately 52 weeks.

2.2. A MULTIDIMENSIONAL DATA MODEL 15

British

Columbia

Vancouver Victoria

Ontario Quebec

Toronto Montreal

New York

New York Los Angeles San Francisco

California Illinois

Chicago

Canada USA

............

...

......

all

...

location

all

country

province_or_state

city

Figure 2.7: A concept hierarchy for the dimension location.

Concept hierarchies may be provided manually by system users, domain experts, knowledge engineers, or au-
tomatically generated based on statistical analysis of the data distribution. The automatic generation of concept
hierarchies is discussed in Chapter 3. Concept hierarchies are further discussed in Chapter 4.

Concept hierarchies allow data to be handled at varying levels of abstraction, as we shall see in the following
subsection.

2.2.6 OLAP operations in the multidimensional data model

\How are concept hierarchies useful in OLAP?"

In the multidimensional model, data are organized into multiple dimensions and each dimension contains multiple
levels of abstraction de�ned by concept hierarchies. This organization provides users with the exibility to view data
from di�erent perspectives. A number of OLAP data cube operations exist to materialize these di�erent views,
allowing interactive querying and analysis of the data at hand. Hence, OLAP provides a user-friendly environment

month

quarter

year

week

day

country

city

street

province_or_state

a) a hierarchy for location b) a lattice for time

Figure 2.8: Hierarchical and lattice structures of attributes in warehouse dimensions.

16 CHAPTER 2. DATA WAREHOUSE AND OLAP TECHNOLOGY FOR DATA MINING

($0 - $200]

($100 - $200]

($200 - $400]

($200 - $300]

($400 - $600]

($400 - $500]

($600 - $800]

($600 - $700] ($700 - $800]($500 - $600]($300 - $400]

($800 - $1,000]

($800 - $900]

($0 - $1000]

($0 - $100] ($900 - $1,000]

Figure 2.9: A concept hierarchy for the attribute price.

for interactive data analysis.

Example 2.8 Let's have a look at some typical OLAP operations for multidimensional data. Each of the operations
described below is illustrated in Figure 2.10. At the center of the �gure is a data cube for AllElectronics sales. The
cube contains the dimensions location, time, and item, where location is aggregated with respect to city values, time
is aggregated with respect to quarters, and item is aggregated with respect to item types. To aid in our explanation,
we refer to this cube as the central cube. The data examined are for the cities Vancouver, Montreal, New York, and
Chicago.

1. roll-up: The roll-up operation (also called the \drill-up" operation by some vendors) performs aggregation on
a data cube, either by climbing-up a concept hierarchy for a dimension or by dimension reduction. Figure 2.10
shows the result of a roll-up operation performed on the central cube by climbing up the concept hierarchy for
location given in Figure 2.7. This hierarchy was de�ned as the total order street < city < province or state <

country. The roll-up operation shown aggregates the data by ascending the location hierarchy from the level
of city to the level of country. In other words, rather than grouping the data by city, the resulting cube groups
the data by country.

When roll-up is performed by dimension reduction, one or more dimensions are removed from the given cube.
For example, consider a sales data cube containing only the two dimensions location and time. Roll-up may
be performed by removing, say, the time dimension, resulting in an aggregation of the total sales by location,
rather than by location and by time.

2. drill-down: Drill-down is the reverse of roll-up. It navigates from less detailed data to more detailed data.
Drill-down can be realized by either stepping-down a concept hierarchy for a dimension or introducing additional
dimensions. Figure 2.10 shows the result of a drill-down operation performed on the central cube by stepping
down a concept hierarchy for time de�ned as day < month < quarter < year. Drill-down occurs by descending
the time hierarchy from the level of quarter to the more detailed level of month. The resulting data cube details
the total sales per month rather than summarized by quarter.

Since a drill-down adds more detail to the given data, it can also be performed by adding new dimensions to
a cube. For example, a drill-down on the central cube of Figure 2.10 can occur by introducing an additional
dimension, such as customer type.

3. slice and dice: The slice operation performs a selection on one dimension of the given cube, resulting in a
subcube. Figure 2.10 shows a slice operation where the sales data are selected from the central cube for the
dimension time using the criteria time=\Q2". The dice operation de�nes a subcube by performing a selection
on two or more dimensions. Figure 2.10 shows a dice operation on the central cube based on the following
selection criteria which involves three dimensions: (location=\Montreal" or \Vancouver") and (time=\Q1" or
\Q2") and (item=\home entertainment" or \computer").

4. pivot (rotate): Pivot (also called \rotate") is a visualization operation which rotates the data axes in view
in order to provide an alternative presentation of the data. Figure 2.10 shows a pivot operation where the

2.2. A MULTIDIMENSIONAL DATA MODEL 17

phone

(types)
item

computer security

time

entertainment

(quarters)

Q2

Q3

Q4

location
(countries)

US

Canada

Q1

home

(cities)
location

Montreal

Vancouver

time
(quarters)

Q1

Q2

(types)
item

home
entertainment

computer

(cities)
location

New York

Montreal

Vancouver

Chicago

time
(quarters)

Q1

Q3

Q4

Q2

home
entertainment

(types)
item

computer

phone

security

14K825K605K 400K

on time

(from quarters

to months)

drill-down
on location

roll-up

(from cities to countries)

for time="Q2"

slice

(time="Q1" or "Q2") and

dice for

(location="Montreal" or "Vancouver") and

(item="home entertainment" or "computer")

home
entertainment

(types)
item

computer

phone

security

time
(months)

(cities)
location

Vancouver

Montreal

Chicago

New York

home
entertainment

computer

phone

security

(types)
item

home
entertainment

(types)
item

computer

phone

security

Chicago

New York

Montreal
Vancouver

(cities)
location

pivot

150K

100K

150K

New York

Montreal

Vancouver

Chicago
(cities)
location

March

April
May

June

July

August

September

October

November

December

January

February

Figure 2.10: Examples of typical OLAP operations on multidimensional data.

18 CHAPTER 2. DATA WAREHOUSE AND OLAP TECHNOLOGY FOR DATA MINING

time

location

customer

namestreet

continent

city

province_or_state

country

item
day

month

quarter

year

category

group

brandname typecategory

Figure 2.11: Modeling business queries: A starnet model.

item and location axes in a 2-D slice are rotated. Other examples include rotating the axes in a 3-D cube, or
transforming a 3-D cube into a series of 2-D planes.

5. other OLAP operations: Some OLAP systems o�er additional drilling operations. For example, drill-
across executes queries involving (i.e., acrosss) more than one fact table. The drill-through operation makes
use of relational SQL facilities to drill through the bottom level of a data cube down to its back-end relational
tables.

Other OLAP operations may include ranking the top-N or bottom-N items in lists, as well as computing moving
averages, growth rates, interests, internal rates of return, depreciation, currency conversions, and statistical
functions.

OLAP o�ers analytical modeling capabilities, including a calculation engine for deriving ratios, variance, etc., and
for computing measures across multiple dimensions. It can generate summarizations, aggregations, and hierarchies
at each granularity level and at every dimension intersection. OLAP also supports functional models for forecasting,
trend analysis, and statistical analysis. In this context, an OLAP engine is a powerful data analysis tool.

2.2.7 A starnet query model for querying multidimensional databases

The querying of multidimensional databases can be based on a starnet model. A starnet model consists of radial
lines emanating from a central point, where each line represents a concept hierarchy for a dimension. Each abstraction
level in the hierarchy is called a footprint. These represent the granularities available for use by OLAP operations
such as drill-down and roll-up.

Example 2.9 A starnet query model for the AllElectronics data warehouse is shown in Figure 2.11. This starnet
consists of four radial lines, representing concept hierarchies for the dimensions location, customer, item, and time,
respectively. Each line consists of footprints representing abstraction levels of the dimension. For example, the time
line has four footprints: \day", \month", \quarter" and \year". A concept hierarchy may involve a single attribute
(like date for the time hierarchy), or several attributes (e.g., the concept hierarchy for location involves the attributes
street, city, province or state, and country). In order to examine the item sales at AllElectronics, one can roll up
along the time dimension from month to quarter, or, say, drill down along the location dimension from country to
city. Concept hierarchies can be used to generalize data by replacing low-level values (such as \day" for the time
dimension) by higher-level abstractions (such as \year"), or to specialize data by replacing higher-level abstractions
with lower-level values. 2

2.3. DATA WAREHOUSE ARCHITECTURE 19

2.3 Data warehouse architecture

2.3.1 Steps for the design and construction of data warehouses

The design of a data warehouse: A business analysis framework

\What does the data warehouse provide for business analysts?"

First, having a data warehouse may provide a competitive advantage by presenting relevant information from
which to measure performance and make critical adjustments in order to help win over competitors. Second, a
data warehouse can enhance business productivity since it is able to quickly and e�ciently gather information which
accurately describes the organization. Third, a data warehouse facilitates customer relationship marketing since
it provides a consistent view of customers and items across all lines of business, all departments, and all markets.
Finally, a data warehouse may bring about cost reduction by tracking trends, patterns, and exceptions over long
periods of time in a consistent and reliable manner.

To design an e�ective data warehouse one needs to understand and analyze business needs, and construct a
business analysis framework. The construction of a large and complex information system can be viewed as the
construction of a large and complex building, for which the owner, architect, and builder have di�erent views.
These views are combined to form a complex framework which represents the top-down, business-driven, or owner's
perspective, as well as the bottom-up, builder-driven, or implementor's view of the information system.

Four di�erent views regarding the design of a data warehouse must be considered: the top-down view, the data
source view, the data warehouse view, and the business query view.

� The top-down view allows the selection of the relevant information necessary for the data warehouse. This
information matches the current and coming business needs.

� The data source view exposes the information being captured, stored, and managed by operational systems.
This informationmay be documented at various levels of detail and accuracy, from individual data source tables
to integrated data source tables. Data sources are often modeled by traditional data modeling techniques, such
as the entity-relationship model or CASE (Computer Aided Software Engineering) tools.

� The data warehouse view includes fact tables and dimension tables. It represents the information that is
stored inside the data warehouse, including precalculated totals and counts, as well as information regarding
the source, date, and time of origin, added to provide historical context.

� Finally, the business query view is the perspective of data in the data warehouse from the view point of the
end-user.

Building and using a data warehouse is a complex task since it requires business skills, technology skills, and
program management skills. Regarding business skills, building a data warehouse involves understanding how such
systems store and manage their data, how to build extractors which transfer data from the operational system
to the data warehouse, and how to build warehouse refresh software that keeps the data warehouse reasonably
up to date with the operational system's data. Using a data warehouse involves understanding the signi�cance of
the data it contains, as well as understanding and translating the business requirements into queries that can be
satis�ed by the data warehouse. Regarding technology skills, data analysts are required to understand how to make
assessments from quantitative information and derive facts based on conclusions from historical information in the
data warehouse. These skills include the ability to discover patterns and trends, to extrapolate trends based on
history and look for anomalies or paradigm shifts, and to present coherent managerial recommendations based on
such analysis. Finally, program management skills involve the need to interface with many technologies, vendors and
end-users in order to deliver results in a timely and cost-e�ective manner.

The process of data warehouse design

\How can I design a data warehouse?"

A data warehouse can be built using a top-down approach, a bottom-up approach, or a combination of both. The
top-down approach starts with the overall design and planning. It is useful in cases where the technology is
mature and well-known, and where the business problems that must be solved are clear and well-understood. The

20 CHAPTER 2. DATA WAREHOUSE AND OLAP TECHNOLOGY FOR DATA MINING

bottom-up approach starts with experiments and prototypes. This is useful in the early stage of business modeling
and technology development. It allows an organization to move forward at considerably less expense and to evaluate
the bene�ts of the technology before making signi�cant commitments. In the combined approach, an organization
can exploit the planned and strategic nature of the top-down approach while retaining the rapid implementation and
opportunistic application of the bottom-up approach.

From the software engineering point of view, the design and construction of a data warehouse may consist of
the following steps: planning, requirements study, problem analysis, warehouse design, data integration and testing,
and �nally deployment of the data warehouse. Large software systems can be developed using two methodologies:
the waterfall method or the spiral method. The waterfall method performs a structured and systematic analysis
at each step before proceeding to the next, which is like a waterfall, falling from one step to the next. The spiral
method involves the rapid generation of increasingly functional systems, with short intervals between successive
releases. This is considered a good choice for data warehouse development, especially for data marts, because the
turn-around time is short, modi�cations can be done quickly, and new designs and technologies can be adapted in a
timely manner.

In general, the warehouse design process consists of the following steps.

1. Choose a business process to model, e.g., orders, invoices, shipments, inventory, account administration, sales,
and the general ledger. If the business process is organizational and involves multiple, complex object collec-
tions, a data warehouse model should be followed. However, if the process is departmental and focuses on the
analysis of one kind of business process, a data mart model should be chosen.

2. Choose the grain of the business process. The grain is the fundamental, atomic level of data to be represented
in the fact table for this process, e.g., individual transactions, individual daily snapshots, etc.

3. Choose the dimensions that will apply to each fact table record. Typical dimensions are time, item, customer,
supplier, warehouse, transaction type, and status.

4. Choose themeasures that will populate each fact table record. Typical measures are numeric additive quantities
like dollars sold and units sold.

Since data warehouse construction is a di�cult and long term task, its implementation scope should be clearly
de�ned. The goals of an initial data warehouse implementation should be speci�c, achievable, and measurable. This
involves determining the time and budget allocations, the subset of the organization which is to be modeled, the
number of data sources selected, and the number and types of departments to be served.

Once a data warehouse is designed and constructed, the initial deployment of the warehouse includes initial
installation, rollout planning, training and orientation. Platform upgrades and maintenance must also be considered.
Data warehouse administration will include data refreshment, data source synchronization, planning for disaster
recovery, managing access control and security, managing data growth, managing database performance, and data
warehouse enhancement and extension. Scope management will include controlling the number and range of queries,
dimensions, and reports; limiting the size of the data warehouse; or limiting the schedule, budget, or resources.

Various kinds of data warehouse design tools are available. Data warehouse development tools provide
functions to de�ne and edit metadata repository contents such as schemas, scripts or rules, answer queries, output
reports, and ship metadata to and from relational database system catalogues. Planning and analysis tools study
the impact of schema changes and of refresh performance when changing refresh rates or time windows.

2.3.2 A three-tier data warehouse architecture

\What is data warehouse architecture like?"

Data warehouses often adopt a three-tier architecture, as presented in Figure 2.12. The bottom tier is a ware-
house database server which is almost always a relational database system. The middle tier is an OLAP server

which is typically implemented using either (1) a Relational OLAP (ROLAP) model, i.e., an extended relational
DBMS that maps operations on multidimensional data to standard relational operations; or (2) a Multidimen-

sional OLAP (MOLAP) model, i.e., a special purpose server that directly implements multidimensional data and
operations. The top tier is a client, which contains query and reporting tools, analysis tools, and/or data mining
tools (e.g., trend analysis, prediction, and so on).

2.3. DATA WAREHOUSE ARCHITECTURE 21

Load
Transform

Clean
Extract

Refresh

Query/Report Analysis Data Mining

OLAP Server OLAP ServerOutput

Operational Databases External sources

Data Cleaning

and

Data Integration

Data Storage

OLAP Engine

Front-End Tools

Metadata Repository

AdministrationMonitoring Data Marts
Data Warehouse

Figure 2.12: A three-tier data warehousing architecture.

From the architecture point of view, there are three data warehouse models: the enterprise warehouse, the data
mart, and the virtual warehouse.

� Enterprise warehouse: An enterprise warehouse collects all of the information about subjects spanning the
entire organization. It provides corporate-wide data integration, usually from one or more operational systems
or external information providers, and is cross-functional in scope. It typically contains detailed data as well as
summarized data, and can range in size from a few gigabytes to hundreds of gigabytes, terabytes, or beyond.
An enterprise data warehouse may be implemented on traditional mainframes, UNIX superservers, or parallel
architecture platforms. It requires extensive business modeling and may take years to design and build.

� Data mart: A data mart contains a subset of corporate-wide data that is of value to a speci�c group of
users. The scope is con�ned to speci�c, selected subjects. For example, a marketing data mart may con�ne its
subjects to customer, item, and sales. The data contained in data marts tend to be summarized.

Data marts are usually implemented on low cost departmental servers that are UNIX-, Windows/NT-, or
OS/2-based. The implementation cycle of a data mart is more likely to be measured in weeks rather than
months or years. However, it may involve complex integration in the long run if its design and planning were
not enterprise-wide.

Depending on the source of data, data marts can be categorized into the following two classes:

{ Independent data marts are sourced from data captured from one or more operational systems or external
information providers, or from data generated locally within a particular department or geographic area.

{ Dependent data marts are sourced directly from enterprise data warehouses.

� Virtual warehouse: A virtual warehouse is a set of views over operational databases. For e�cient query
processing, only some of the possible summary views may be materialized. A virtual warehouse is easy to build
but requires excess capacity on operational database servers.

The top-down development of an enterprise warehouse serves as a systematic solution and minimizes integration
problems. However, it is expensive, takes a long time to develop, and lacks exibility due to the di�culty in achieving
consistency and consensus for a common data model for the entire organization. The bottom-up approach to the
design, development, and deployment of independent data marts provides exibility, low cost, and rapid return

22 CHAPTER 2. DATA WAREHOUSE AND OLAP TECHNOLOGY FOR DATA MINING

Enterprise
Data

Warehouse

Define a high-level corporate data model

model

refinement model refinement

Data
MartMart

Data

Data Marts
Distributed

Multi-Tier

Warehouse
Data

Figure 2.13: A recommended approach for data warehouse development.

of investment. It, however, can lead to problems when integrating various disparate data marts into a consistent
enterprise data warehouse.

A recommended method for the development of data warehouse systems is to implement the warehouse in an
incremental and evolutionary manner, as shown in Figure 2.13. First, a high-level corporate data model is de�ned
within a reasonably short period of time (such as one or two months) that provides a corporate-wide, consistent,
integrated view of data among di�erent subjects and potential usages. This high-level model, although it will need to
be re�ned in the further development of enterprise data warehouses and departmental data marts, will greatly reduce
future integration problems. Second, independent data marts can be implemented in parallel with the enterprise
warehouse based on the same corporate data model set as above. Third, distributed data marts can be constructed
to integrate di�erent data marts via hub servers. Finally, a multi-tier data warehouse is constructed where the
enterprise warehouse is the sole custodian of all warehouse data, which is then distributed to the various dependent
data marts.

2.3.3 OLAP server architectures: ROLAP vs. MOLAP vs. HOLAP

\What is OLAP server architecture like?"

Logically, OLAP engines present business users with multidimensional data from data warehouses or data marts,
without concerns regarding how or where the data are stored. However, the physical architecture and implementation
of OLAP engines must consider data storage issues. Implementations of a warehouse server engine for OLAP
processing include:

� Relational OLAP (ROLAP) servers: These are the intermediate servers that stand in between a relational
back-end server and client front-end tools. They use a relational or extended-relational DBMS to store and
manage warehouse data, and OLAP middleware to support missing pieces. ROLAP servers include optimization
for each DBMS back-end, implementation of aggregation navigation logic, and additional tools and services.
ROLAP technology tends to have greater scalability than MOLAP technology. The DSS server of Microstrategy
and Metacube of Informix, for example, adopt the ROLAP approach2.

� Multidimensional OLAP (MOLAP) servers: These servers support multidimensional views of data
through array-based multidimensional storage engines. They map multidimensional views directly to data

2Information on these products can be found at www.informix.com and www.microstrategy.com, respectively.

2.3. DATA WAREHOUSE ARCHITECTURE 23

cube array structures. For example, Essbase of Arbor is a MOLAP server. The advantage of using a data
cube is that it allows fast indexing to precomputed summarized data. Notice that with multidimensional data
stores, the storage utilization may be low if the data set is sparse. In such cases, sparse matrix compression
techniques (see Section 2.4) should be explored.

Many OLAP servers adopt a two-level storage representation to handle sparse and dense data sets: the dense
subcubes are identi�ed and stored as array structures, while the sparse subcubes employ compression technology
for e�cient storage utilization.

� Hybrid OLAP (HOLAP) servers: The hybrid OLAP approach combines ROLAP and MOLAP technology,
bene�tting from the greater scalability of ROLAP and the faster computation of MOLAP. For example, a
HOLAP server may allow large volumes of detail data to be stored in a relational database, while aggregations
are kept in a separate MOLAP store. The Microsoft SQL Server 7.0 OLAP Services supports a hybrid OLAP
server.

� Specialized SQL servers: To meet the growing demand of OLAP processing in relational databases, some
relational and data warehousing �rms (e.g., Redbrick) implement specialized SQL servers which provide ad-
vanced query language and query processing support for SQL queries over star and snowake schemas in a
read-only environment.

The OLAP functional architecture consists of three components: the data store, the OLAP server, and the user
presentation module. The data store can be further classi�ed as a relational data store or a multidimensional data

store, depending on whether a ROLAP or MOLAP architecture is adopted.

\So, how are data actually stored in ROLAP and MOLAP architectures?"

As its name implies, ROLAP uses relational tables to store data for on-line analytical processing. Recall that
the fact table associated with a base cuboid is referred to as a base fact table. The base fact table stores data at
the abstraction level indicated by the join keys in the schema for the given data cube. Aggregated data can also be
stored in fact tables, referred to as summary fact tables. Some summary fact tables store both base fact table
data and aggregated data, as in Example 2.10. Alternatively, separate summary fact tables can be used for each
level of abstraction, to store only aggregated data.

Example 2.10 Table 2.4 shows a summary fact table which contains both base fact data and aggregated data. The
schema of the table is \hrecord identi�er (RID), item, location, day, month, quarter, year, dollars sold (i.e., sales
amount)i", where day, month, quarter, and year de�ne the date of sales. Consider the tuple with an RID of 1001.
The data of this tuple are at the base fact level. Here, the date of sales is October 15, 1997. Consider the tuple with
an RID of 5001. This tuple is at a more general level of abstraction than the tuple having an RID of 1001. Here,
the \Main Street" value for location has been generalized to \Vancouver". The day value has been generalized to
all, so that the corresponding time value is October 1997. That is, the dollars sold amount shown is an aggregation
representing the entire month of October 1997, rather than just October 15, 1997. The special value all is used to
represent subtotals in summarized data.

RID item location day month quarter year dollars sold

1001 TV Main Street 15 10 Q4 1997 250.60
. .
5001 TV Vancouver all 10 Q4 1997 45,786.08
. .

Table 2.4: Single table for base and summary facts.

2

MOLAP uses multidimensional array structures to store data for on-line analytical processing. For example, the
data cube structure described and referred to throughout this chapter is such an array structure.

24 CHAPTER 2. DATA WAREHOUSE AND OLAP TECHNOLOGY FOR DATA MINING

Most data warehouse systems adopt a client-server architecture. A relational data store always resides at the
data warehouse/data mart server site. A multidimensional data store can reside at either the database server site or
the client site. There are several alternative physical con�guration options.

If a multidimensional data store resides at the client side, it results in a \fat client". In this case, the system
response time may be quick since OLAP operations will not consume network tra�c, and the network bottleneck
happens only at the warehouse loading stage. However, loading a large data warehouse can be slow and the processing
at the client side can be heavy, which may degrade the system performance. Moreover, data security could be a
problem because data are distributed to multiple clients. A variation of this option is to partition the multidimensional
data store and distribute selected subsets of the data to di�erent clients.

Alternatively, a multidimensional data store can reside at the server site. One option is to set both the multidi-
mensional data store and the OLAP server at the data mart site. This con�guration is typical for data marts that
are created by re�ning or re-engineering the data from an enterprise data warehouse.

A variation is to separate the multidimensional data store and OLAP server. That is, an OLAP server layer is
added between the client and data mart. This con�guration is used when the multidimensional data store is large,
data sharing is needed, and the client is \thin" (i.e., does not require many resources).

2.3.4 SQL extensions to support OLAP operations

\How can SQL be extended to support OLAP operations?"

An OLAP server should support several data types including text, calendar, and numeric data, as well as data at
di�erent granularities (such as regarding the estimated and actual sales per item). An OLAP server should contain a
calculation engine which includes domain-speci�c computations (such as for calendars) and a rich library of aggregate
functions. Moreover, an OLAP server should include data load and refresh facilities so that write operations can
update precomputed aggregates, and write/load operations are accompanied by data cleaning.

A multidimensional view of data is the foundation of OLAP. SQL extensions to support OLAP operations have
been proposed and implemented in extended-relational servers. Some of these are enumerated as follows.

1. Extending the family of aggregate functions.

Relational database systems have provided several useful aggregate functions, including sum(), avg(), count(),

min(), and max() as SQL standards. OLAP query answering requires the extension of these standards to in-
clude other aggregate functions such as rank(), N tile(), median(), and mode(). For example, a user may
like to list the top �ve most pro�table items (using rank()), list the �rms whose performance is in the bottom

10% in comparison to all other �rms (using N tile()), or print the most frequently sold items in March (using
mode()).

2. Adding reporting features.

Many report writer softwares allow aggregate features to be evaluated on a time window. Examples include
running totals, cumulative totals, moving averages, break points, etc. OLAP systems, to be truly useful for
decision support, should introduce such facilities as well.

3. Implementing multiple group-by's.

Given the multidimensional view point of data warehouses, it is important to introduce group-by's for grouping
sets of attributes. For example, one may want to list the total sales from 1996 to 1997 grouped by item, by
region, and by quarter. Although this can be simulated by a set of SQL statements, it requires multiple scans
of databases, and is thus a very ine�cient solution. New operations, including cube and roll-up, have been
introduced in some relational system products which explore e�cient implementation methods.

2.4 Data warehouse implementation

Data warehouses contain huge volumes of data. OLAP engines demand that decision support queries be answered in
the order of seconds. Therefore, it is crucial for data warehouse systems to support highly e�cient cube computation
techniques, access methods, and query processing techniques. \How can this be done?", you may wonder. In this
section, we examine methods for the e�cient implementation of data warehouse systems.

2.4. DATA WAREHOUSE IMPLEMENTATION 25

(city, year)

(city) (year)

()

(item)

(city, item) (item, year)

(city, item, year)

0-D (apex) cuboid; all

3-D (base) cuboid

2-D cuboids

1-D cuboids

Figure 2.14: Lattice of cuboids, making up a 3-dimensional data cube. Each cuboid represents a di�erent group-by.
The base cuboid contains the three dimensions, city, item, and year.

2.4.1 E�cient computation of data cubes

At the core of multidimensional data analysis is the e�cient computation of aggregations across many sets of dimen-
sions. In SQL terms, these aggregations are referred to as group-by's.

The compute cube operator and its implementation

One approach to cube computation extends SQL so as to include a compute cube operator. The compute cube
operator computes aggregates over all subsets of the dimensions speci�ed in the operation.

Example 2.11 Suppose that you would like to create a data cube for AllElectronics sales which contains the fol-
lowing: item, city, year, and sales in dollars. You would like to be able to analyze the data, with queries such as the
following:

1. \Compute the sum of sales, grouping by item and city."

2. \Compute the sum of sales, grouping by item."

3. \Compute the sum of sales, grouping by city".

What is the total number of cuboids, or group-by's, that can be computed for this data cube? Taking the
three attributes, city, item, and year, as three dimensions and sales in dollars as the measure, the total number
of cuboids, or group-by's, that can be computed for this data cube is 23 = 8. The possible group-by's are the
following: f(city; item; year), (city; item), (city; year), (item; year), (city), (item), (year), ()g, where () means that
the group-by is empty (i.e., the dimensions are not grouped). These group-by's form a lattice of cuboids for the data
cube, as shown in Figure 2.14. The base cuboid contains all three dimensions, city, item, and year. It can return the
total sales for any combination of the three dimensions. The apex cuboid, or 0-D cuboid, refers to the case where
the group-by is empty. It contains the total sum of all sales. Consequently, it is represented by the special value all.

2

An SQL query containing no group-by, such as \compute the sum of total sales" is a zero-dimensional operation.
An SQL query containing one group-by, such as \compute the sum of sales, group by city" is a one-dimensional

operation. A cube operator on n dimensions is equivalent to a collection of group by statements, one for each subset
of the n dimensions. Therefore, the cube operator is the n-dimensional generalization of the group by operator.

Based on the syntax of DMQL introduced in Section 2.2.3, the data cube in Example 2.11, can be de�ned as

de�ne cube sales [item, city, year]: sum(sales in dollars)

26 CHAPTER 2. DATA WAREHOUSE AND OLAP TECHNOLOGY FOR DATA MINING

For a cube with n dimensions, there are a total of 2n cuboids, including the base cuboid. The statement

compute cube sales

explicitly instructs the system to compute the sales aggregate cuboids for all of the eight subsets of the set fitem,
city, yearg, including the empty subset. A cube computation operator was �rst proposed and studied by Gray, et al.
(1996).

On-line analytical processing may need to access di�erent cuboids for di�erent queries. Therefore, it does seem
like a good idea to compute all or at least some of the cuboids in a data cube in advance. Precomputation leads
to fast response time and avoids some redundant computation. Actually, most, if not all, OLAP products resort to
some degree of precomputation of multidimensional aggregates.

A major challenge related to this precomputation, however, is that the required storage space may explode if
all of the cuboids in a data cube are precomputed, especially when the cube has several dimensions associated with
multiple level hierarchies.

\How many cuboids are there in an n-dimensional data cube?" If there were no hierarchies associated with each
dimension, then the total number of cuboids for an n-dimensional data cube, as we have seen above, is 2n. However,
in practice, many dimensions do have hierarchies. For example, the dimension time is usually not just one level, such
as year, but rather a hierarchy or a lattice, such as day < week < month < quarter < year. For an n-dimensional
data cube, the total number of cuboids that can be generated (including the cuboids generated by climbing up the
hierarchies along each dimension) is:

T =
nY

i=1

(Li + 1);

where Li is the number of levels associated with dimension i (excluding the virtual top level all since generalizing to
all is equivalent to the removal of a dimension). This formula is based on the fact that at most one abstraction level
in each dimension will appear in a cuboid. For example, if the cube has 10 dimensions and each dimension has 4
levels, the total number of cuboids that can be generated will be 510 � 9:8� 106.

By now, you probably realize that it is unrealistic to precompute and materialize all of the cuboids that can
possibly be generated for a data cube (or, from a base cuboid). If there are many cuboids, and these cuboids are
large in size, a more reasonable option is partial materialization, that is, to materialize only some of the possible
cuboids that can be generated.

Partial materialization: Selected computation of cuboids

There are three choices for data cube materialization: (1) precompute only the base cuboid and none of the remaining
\non-base" cuboids (no materialization), (2) precompute all of the cuboids (full materialization), and (3)
selectively compute a proper subset of the whole set of possible cuboids (partial materialization). The �rst choice
leads to computing expensive multidimensional aggregates on the y, which could be slow. The second choice may
require huge amounts of memory space in order to store all of the precomputed cuboids. The third choice presents
an interesting trade-o� between storage space and response time.

The partial materialization of cuboids should consider three factors: (1) identify the subset of cuboids to ma-
terialize, (2) exploit the materialized cuboids during query processing, and (3) e�ciently update the materialized
cuboids during load and refresh.

The selection of the subset of cuboids to materialize should take into account the queries in the workload, their
frequencies, and their accessing costs. In addition, it should consider workload characteristics, the cost for incremental
updates, and the total storage requirements. The selection must also consider the broad context of physical database
design, such as the generation and selection of indices. Several OLAP products have adopted heuristic approaches
for cuboid selection. A popular approach is to materialize the set of cuboids having relatively simple structure. Even
with this restriction, there are often still a large number of possible choices. Under a simpli�ed assumption, a greedy
algorithm has been proposed and has shown good performance.

Once the selected cuboids have been materialized, it is important to take advantage of them during query
processing. This involves determining the relevant cuboid(s) from among the candidate materialized cuboids, how
to use available index structures on the materialized cuboids, and how to transform the OLAP operations on to the
selected cuboid(s). These issues are discussed in Section 2.4.3 on query processing.

2.4. DATA WAREHOUSE IMPLEMENTATION 27

Finally, during load and refresh, the materialized cuboids should be updated e�ciently. Parallelism and incre-
mental update techniques for this should be explored.

Multiway array aggregation in the computation of data cubes

In order to ensure fast on-line analytical processing, however, we may need to precompute all of the cuboids for a
given data cube. Cuboids may be stored on secondary storage, and accessed when necessary. Hence, it is important
to explore e�cient methods for computing all of the cuboids making up a data cube, that is, for full materialization.
These methods must take into consideration the limited amount of main memory available for cuboid computation,
as well as the time required for such computation. To simplify matters, we may exclude the cuboids generated by
climbing up existing hierarchies along each dimension.

Since Relational OLAP (ROLAP) uses tuples and relational tables as its basic data structures, while the basic
data structure used in multidimensional OLAP (MOLAP) is the multidimensional array, one would expect that
ROLAP and MOLAP each explore very di�erent cube computation techniques.

ROLAP cube computation uses the following major optimization techniques.

1. Sorting, hashing, and grouping operations are applied to the dimension attributes in order to reorder and
cluster related tuples.

2. Grouping is performed on some subaggregates as a \partial grouping step". These \partial groupings" may be
used to speed up the computation of other subaggregates.

3. Aggregates may be computed from previously computed aggregates, rather than from the base fact tables.

\How do these optimization techniques apply to MOLAP?" ROLAP uses value-based addressing, where dimension
values are accessed by key-based addressing search strategies. In contrast, MOLAP uses direct array addressing,
where dimension values are accessed via the position or index of their corresponding array locations. Hence, MOLAP
cannot perform the value-based reordering of the �rst optimization technique listed above for ROLAP. Therefore, a
di�erent approach should be developed for the array-based cube construction of MOLAP, such as the following.

1. Partition the array into chunks. A chunk is a subcube that is small enough to �t into the memory available
for cube computation. Chunking is a method for dividing an n-dimensional array into small n-dimensional
chunks, where each chunk is stored as an object on disk. The chunks are compressed so as to remove wasted
space resulting from empty array cells (i.e., cells that do not contain any valid data). For instance, \chunkID
+ o�set" can be used as a cell addressing mechanism to compress a sparse array structure and when
searching for cells within a chunk. Such a compression technique is powerful enough to handle sparse cubes,
both on disk and in memory.

2. Compute aggregates by visiting (i.e., accessing the values at) cube cells. The order in which cells are visited can
be optimized so as to minimize the number of times that each cell must be revisited, thereby reducing memory
access and storage costs. The trick is to exploit this ordering so that partial aggregates can be computed
simultaneously, and any unnecessary revisiting of cells is avoided.

Since this chunking technique involves \overlapping" some of the aggregation computations, it is referred to as
multiway array aggregation in data cube computation.

We explain this approach to MOLAP cube construction by looking at a concrete example.

Example 2.12 Consider a 3-D data array containing the three dimensions, A, B, and C.

� The 3-D array is partitioned into small, memory-based chunks. In this example, the array is partitioned into
64 chunks as shown in Figure 2.15. Dimension A is organized into 4 partitions, a0; a1; a2, and a3. Dimensions
B and C are similarly organized into 4 partitions each. Chunks 1, 2, . . . , 64 correspond to the subcubes a0b0c0,
a1b0c0, . . . , a3b3c3, respectively. Suppose the size of the array for each dimension, A, B, and C is 40, 400,
4000, respectively.

� Full materialization of the corresponding data cube involves the computation of all of the cuboids de�ning this
cube. These cuboids consist of:

28 CHAPTER 2. DATA WAREHOUSE AND OLAP TECHNOLOGY FOR DATA MINING

15 1614 60
44

28

56
4024

52

36
20

484746
323130

636261
45

29

a0 a1 a2 a3

b0

b1

b2

b3

c3
c2

c0
c1

A

B

C
64

431

9

5

13

2

Figure 2.15: A 3-D array for the dimensions A, B, and C, organized into 64 chunks.

{ The base cuboid, denoted byABC (fromwhich all of the other cuboids are directly or indirectly computed).
This cube is already computed and corresponds to the given 3-D array.

{ The 2-D cuboids, AB, AC, and BC, which respectively correspond to the group-by's AB, AC, and BC.
These cuboids must be computed.

{ The 1-D cuboids, A, B, and C, which respectively correspond to the group-by's A, B, and C. These
cuboids must be computed.

{ The 0-D (apex) cuboid, denoted by all, which corresponds to the group-by (), i.e., there is no group-by
here. This cuboid must be computed.

Let's look at how the multiway array aggregation technique is used in this computation.

� There are many possible orderings with which chunks can be read into memory for use in cube computation.
Consider the ordering labeled from 1 to 64, shown in Figure 2.15. Suppose we would like to compute the b0c0
chunk of the BC cuboid. We allocate space for this chunk in \chunk memory". By scanning chunks 1 to 4 of
ABC, the b0c0 chunk is computed. That is, the cells for b0c0 are aggregated over a0 to a3.

The chunk memory can then be assigned to the next chunk, b1c0, which completes its aggregation after the
scanning of the next 4 chunks of ABC: 5 to 8.

Continuing in this way, the entire BC cuboid can be computed. Therefore, only one chunk of BC needs to be
in memory, at a time, for the computation of all of the chunks of BC.

� In computing the BC cuboid, we will have scanned each of the 64 chunks. \Is there a way to avoid having to

rescan all of these chunks for the computation of other cuboids, such as AC and AB?" The answer is, most
de�nitely - yes. This is where the multiway computation idea comes in. For example, when chunk 1, i.e.,
a0b0c0, is being scanned (say, for the computation of the 2-D chunk b0c0 of BC, as described above), all of the
other 2-D chunks relating to a0b0c0 can be simultaneously computed. That is, when a0b0c0, is being scanned,
each of the three chunks, b0c0, a0c0, and a0b0, on the three 2-D aggregation planes, BC, AC, and AB, should
be computed then as well. In other words, multiway computation aggregates to each of the 3-D planes while a
3-D chunk is in memory.

Let's look at how di�erent orderings of chunk scanning and of cuboid computation can a�ect the overall data
cube computation e�ciency. Recall that the size of the dimensions A, B, and C is 40, 400, and 4000, respectively.
Therefore, the largest 2-D plane is BC (of size 400 � 4; 000 = 1; 600; 000). The second largest 2-D plane is AC (of
size 40� 4; 000 = 160; 000). AB is the smallest 2-D plane (with a size of 40� 400 = 16; 000).

� Suppose that the chunks are scanned in the order shown, from chunk 1 to 64. By scanning in this order, one
chunk of the largest 2-D plane, BC, is fully computed for each row scanned. That is, b0c0 is fully aggregated

2.4. DATA WAREHOUSE IMPLEMENTATION 29

a) Most efficient ordering of array aggregation

(min. memory requirements = 156,000

memory units)

b) Least efficient ordering of array aggregation

(min. memory requirements = 1,641,000

memory units)

ABC

ALL

BA C

BCACAB

ALL

ABC

ACAB BC

CA B

Figure 2.16: Two orderings of multiway array aggregation for computation of the 3-D cube of Example 2.12.

after scanning the row containing chunks 1 to 4; b1c0 is fully aggregated after scanning chunks 5 to 8, and
so on. In comparison, the complete computation of one chunk of the second largest 2-D plane, AC, requires
scanning 13 chunks (given the ordering from 1 to 64). For example, a0c0 is fully aggregated after the scanning
of chunks 1, 5, 9, and 13. Finally, the complete computation of one chunk of the smallest 2-D plane, AB,
requires scanning 49 chunks. For example, a0b0 is fully aggregated after scanning chunks 1, 17, 33, and 49.
Hence, AB requires the longest scan of chunks in order to complete its computation. To avoid bringing a 3-D
chunk into memory more than once, the minimum memory requirement for holding all relevant 2-D planes in
chunk memory, according to the chunk ordering of 1 to 64 is as follows: 40� 400 (for the whole AB plane) +
40� 1; 000 (for one row of the AC plane) + 100� 1; 000 (for one chunk of the BC plane) = 16,000 + 40,000
+ 100,000 = 156,000.

� Suppose, instead, that the chunks are scanned in the order 1, 17, 33, 49, 5, 21, 37, 53, etc. That is, suppose
the scan is in the order of �rst aggregating towards the AB plane, and then towards the AC plane and lastly
towards the BC plane. The minimummemory requirement for holding 2-D planes in chunk memory would be
as follows: 400� 4; 000 (for the whole BC plane) + 40� 1; 000 (for one row of the AC plane) + 10� 100 (for
one chunk of the AB plane) = 1,600,000 + 40,000 + 1,000 = 1,641,000. Notice that this is more than 10 times

the memory requirement of the scan ordering of 1 to 64.

� Similarly, one can work out the minimummemory requirements for the multiway computation of the 1-D and
0-D cuboids. Figure 2.16 shows a) the most e�cient ordering and b) the least e�cient ordering, based on
the minimum memory requirements for the data cube computation. The most e�cient ordering is the chunk
ordering of 1 to 64.

� In conclusion, this example shows that the planes should be sorted and computed according to their size in
ascending order. Since jABj < jACj < jBCj, the AB plane should be computed �rst, followed by the AC and
BC planes. Similarly, for the 1-D planes, jAj < jBj < jCj and therefore the A plane should be computed before
the B plane, which should be computed before the C plane.

2

Example 2.12 assumes that there is enough memory space for one-pass cube computation (i.e., to compute all of
the cuboids from one scan of all of the chunks). If there is insu�cient memory space, the computation will require

30 CHAPTER 2. DATA WAREHOUSE AND OLAP TECHNOLOGY FOR DATA MINING

more than one pass through the 3-D array. In such cases, however, the basic principle of ordered chunk computation
remains the same.

\Which is faster | ROLAP or MOLAP cube computation?" With the use of appropriate sparse array compression
techniques and careful ordering of the computation of cuboids, it has been shown that MOLAP cube computation
is signi�cantly faster than ROLAP (relational record-based) computation. Unlike ROLAP, the array structure of
MOLAP does not require saving space to store search keys. Furthermore, MOLAP uses direct array addressing,
which is faster than the key-based addressing search strategy of ROLAP. In fact, for ROLAP cube computation,
instead of cubing a table directly, it is even faster to convert the table to an array, cube the array, and then convert
the result back to a table.

2.4.2 Indexing OLAP data

To facilitate e�cient data accessing, most data warehouse systems support index structures and materialized views
(using cuboids). Methods to select cuboids for materialization were discussed in the previous section. In this section,
we examine how to index OLAP data by bitmap indexing and join indexing.

The bitmap indexing method is popular in OLAP products because it allows quick searching in data cubes.
The bitmap index is an alternative representation of the record ID (RID) list. In the bitmap index for a given
attribute, there is a distinct bit vector, Bv, for each value v in the domain of the attribute. If the domain of a given
attribute consists of n values, then n bits are needed for each entry in the bitmap index (i.e., there are n bit vectors).
If the attribute has the value v for a given row in the data table, then the bit representing that value is set to 1 in
the corresponding row of the bitmap index. All other bits for that row are set to 0.

Bitmap indexing is especially advantageous for low cardinality domains because comparison, join, and aggregation
operations are then reduced to bit-arithmetic, which substantially reduces the processing time. Bitmap indexing also
leads to signi�cant reductions in space and I/O since a string of characters can be represented by a single bit. For
higher cardinality domains, the method can be adapted using compression techniques.

The join indexing method gained popularity from its use in relational database query processing. Traditional
indexing maps the value in a given column to a list of rows having that value. In contrast, join indexing registers the
joinable rows of two relations from a relational database. For example, if two relations R(RID;A) and S(B; SID)
join on the attributes A and B, then the join index record contains the pair (RID; SID), where RID and SID are
record identi�ers from the R and S relations, respectively. Hence, the join index records can identify joinable tuples
without performing costly join operations. Join indexing is especially useful for maintaining the relationship between
a foreign key3 and its matching primary keys, from the joinable relation.

The star schema model of data warehouses makes join indexing attractive for cross table search because the linkage
between a fact table and its corresponding dimension tables are the foreign key of the fact table and the primary key
of the dimension table. Join indexing maintains relationships between attribute values of a dimension (e.g., within
a dimension table) and the corresponding rows in the fact table. Join indices may span multiple dimensions to form
composite join indices. We can use join indexing to identify subcubes that are of interest.

To further speed up query processing, the join indexing and bitmap indexing methods can be integrated to form
bitmapped join indices.

2.4.3 E�cient processing of OLAP queries

The purpose of materializing cuboids and constructing OLAP index structures is to speed up query processing in
data cubes. Given materialized views, query processing should proceed as follows:

1. Determine which operations should be performed on the available cuboids. This involves trans-
forming any selection, projection, roll-up (group-by) and drill-down operations speci�ed in the query into
corresponding SQL and/or OLAP operations. For example, slicing and dicing of a data cube may correspond
to selection and/or projection operations on a materialized cuboid.

2. Determine to which materialized cuboid(s) the relevant operations should be applied. This involves
identifying all of the materialized cuboids that may potentially be used to answer the query, pruning the

3A set of attributes in a relation schema that forms a primary key for another schema is called a foreign key.

2.4. DATA WAREHOUSE IMPLEMENTATION 31

above set using knowledge of \dominance" relationships among the cuboids, estimating the costs of using the
remaining materialized cuboids, and selecting the cuboid with the least cost.

Example 2.13 Suppose that we de�ne a data cube for AllElectronics of the form \sales [time, item, location]:
sum(sales in dollars)". The dimension hierarchies used are \day < month < quarter < year" for time, \item name

< brand < type" for item, and \street < city < province or state < country" for location.

Suppose that the query to be processed is on fbrand, province or stateg, with the selection constant \year =

1997". Also, suppose that there are four materialized cuboids available, as follows.

� cuboid 1: fitem name, city, yearg

� cuboid 2: fbrand, country, yearg

� cuboid 3: fbrand, province or state, yearg

� cuboid 4: fitem name, province or stateg where year = 1997.

\Which of the above four cuboids should be selected to process the query?" Finer granularity data cannot be
generated from coarser granularity data. Therefore, cuboid 2 cannot be used since country is a more general concept
than province or state. Cuboids 1, 3 and 4 can be used to process the query since: (1) they have the same set or
a superset of the dimensions in the query, and (2) the selection clause in the query can imply the selection in the
cuboid, and (3) the abstraction levels for the item and location dimensions in these cuboids are at a �ner level than
brand and province or state, respectively.

\How would the costs of each cuboid compare if used to process the query?" It is likely that using cuboid 1 would
cost the most since both item name and city are at a lower level than the brand and province or state concepts
speci�ed in the query. If there are not many year values associated with items in the cube, but there are several
item names for each brand, then cuboid 3 will be smaller than cuboid 4, and thus cuboid 3 should be chosen to
process the query. However, if e�cient indices are available for cuboid 4, then cuboid 4 may be a better choice.
Therefore, some cost-based estimation is required in order to decide which set of cuboids should be selected for query
processing. 2

Since the storage model of a MOLAP sever is an n-dimensional array, the front-end multidimensional queries are
mapped directly to server storage structures, which provide direct addressing capabilities. The straightforward array
representation of the data cube has good indexing properties, but has poor storage utilization when the data are
sparse. For e�cient storage and processing, sparse matrix and data compression techniques (Section 2.4.1) should
therefore be applied.

The storage structures used by dense and sparse arrays may di�er, making it advantageous to adopt a two-level
approach to MOLAP query processing: use arrays structures for dense arrays, and sparse matrix structures for sparse
arrays. The two-dimensional dense arrays can be indexed by B-trees.

To process a query in MOLAP, the dense one- and two- dimensional arrays must �rst be identi�ed. Indices are
then built to these arrays using traditional indexing structures. The two-level approach increases storage utilization
without sacri�cing direct addressing capabilities.

2.4.4 Metadata repository

\What are metadata?"

Metadata are data about data. When used in a data warehouse, metadata are the data that de�ne warehouse
objects. Metadata are created for the data names and de�nitions of the given warehouse. Additional metadata are
created and captured for timestamping any extracted data, the source of the extracted data, and missing �elds that
have been added by data cleaning or integration processes.

A metadata repository should contain:

� a description of the structure of the data warehouse. This includes the warehouse schema, view, dimensions,
hierarchies, and derived data de�nitions, as well as data mart locations and contents;

32 CHAPTER 2. DATA WAREHOUSE AND OLAP TECHNOLOGY FOR DATA MINING

� operational metadata, which include data lineage (history of migrated data and the sequence of transformations
applied to it), currency of data (active, archived, or purged), and monitoring information (warehouse usage
statistics, error reports, and audit trails);

� the algorithms used for summarization, which include measure and dimension de�nition algorithms, data on
granularity, partitions, subject areas, aggregation, summarization, and prede�ned queries and reports;

� the mapping from the operational environment to the data warehouse, which includes source databases and their
contents, gateway descriptions, data partitions, data extraction, cleaning, transformation rules and defaults,
data refresh and purging rules, and security (user authorization and access control);

� data related to system performance, which include indices and pro�les that improve data access and retrieval
performance, in addition to rules for the timing and scheduling of refresh, update, and replication cycles; and

� business metadata, which include business terms and de�nitions, data ownership information, and charging
policies.

A data warehouse contains di�erent levels of summarization, of which metadata is one type. Other types include
current detailed data which are almost always on disk, older detailed data which are usually on tertiary storage,
lightly summarized data, and highly summarized data (which may or may not be physically housed). Notice that
the only type of summarization that is permanently stored in the data warehouse is that data which is frequently
used.

Metadata play a very di�erent role than other data warehouse data, and are important for many reasons. For
example, metadata are used as a directory to help the decision support system analyst locate the contents of the
data warehouse, as a guide to the mapping of data when the data are transformed from the operational environment
to the data warehouse environment, and as a guide to the algorithms used for summarization between the current
detailed data and the lightly summarized data, and between the lightly summarized data and the highly summarized
data. Metadata should be stored and managed persistently (i.e., on disk).

2.4.5 Data warehouse back-end tools and utilities

Data warehouse systems use back-end tools and utilities to populate and refresh their data. These tools and facilities
include the following functions:

1. data extraction, which typically gathers data from multiple, heterogeneous, and external sources;

2. data cleaning, which detects errors in the data and recti�es them when possible;

3. data transformation, which converts data from legacy or host format to warehouse format;

4. load, which sorts, summarizes, consolidates, computes views, checks integrity, and builds indices and partitions;
and

5. refresh, which propagates the updates from the data sources to the warehouse.

Besides cleaning, loading, refreshing, and metadata de�nition tools, data warehouse systems usually provide a
good set of data warehouse management tools.

Since we are mostly interested in the aspects of data warehousing technology related to data mining, we will not
get into the details of these tools and recommend interested readers to consult books dedicated to data warehousing
technology.

2.5 Further development of data cube technology

In this section, you will study further developments in data cube technology. Section 2.5.1 describes data mining
by discovery-driven exploration of data cubes, where anomalies in the data are automatically detected and marked
for the user with visual cues. Section 2.5.2 describes multifeature cubes for complex data mining queries involving
multiple dependent aggregates at multiple granularities.

2.5. FURTHER DEVELOPMENT OF DATA CUBE TECHNOLOGY 33

2.5.1 Discovery-driven exploration of data cubes

As we have seen in this chapter, data can be summarized and stored in a multidimensional data cube of an OLAP
system. A user or analyst can search for interesting patterns in the cube by specifying a number of OLAP operations,
such as drill-down, roll-up, slice, and dice. While these tools are available to help the user explore the data, the
discovery process is not automated. It is the user who, following her own intuition or hypotheses, tries to recognize
exceptions or anomalies in the data. This hypothesis-driven exploration has a number of disadvantages. The
search space can be very large, making manual inspection of the data a daunting and overwhelming task. High level
aggregations may give no indication of anomalies at lower levels, making it easy to overlook interesting patterns.
Even when looking at a subset of the cube, such as a slice, the user is typically faced with many data values to
examine. The sheer volume of data values alone makes it easy for users to miss exceptions in the data if using
hypothesis-driven exploration.

Discovery-driven exploration is an alternative approach in which precomputed measures indicating data
exceptions are used to guide the user in the data analysis process, at all levels of aggregation. We hereafter refer
to these measures as exception indicators. Intuitively, an exception is a data cube cell value that is signi�cantly
di�erent from the value anticipated, based on a statistical model. The model considers variations and patterns in
the measure value across all of the dimensions to which a cell belongs. For example, if the analysis of item-sales data
reveals an increase in sales in December in comparison to all other months, this may seem like an exception in the
time dimension. However, it is not an exception if the item dimension is considered, since there is a similar increase
in sales for other items during December. The model considers exceptions hidden at all aggregated group-by's of a
data cube. Visual cues such as background color are used to reect the degree of exception of each cell, based on
the precomputed exception indicators. E�cient algorithms have been proposed for cube construction, as discussed
in Section 2.4.1. The computation of exception indicators can be overlapped with cube construction, so that the
overall construction of data cubes for discovery-driven exploration is e�cient.

Three measures are used as exception indicators to help identify data anomalies. These measures indicate the
degree of surprise that the quantity in a cell holds, with respect to its expected value. The measures are computed
and associated with every cell, for all levels of aggregation. They are:

1. SelfExp: This indicates the degree of surprise of the cell value, relative to other cells at the same level of
aggregation.

2. InExp: This indicates the degree of surprise somewhere beneath the cell, if we were to drill down from it.

3. PathExp: This indicates the degree of surprise for each drill-down path from the cell.

The use of these measures for discovery-driven exploration of data cubes is illustrated in the following example.

Example 2.14 Suppose that you would like to analyze the monthly sales at AllElectronics as a percentage di�erence
from the previous month. The dimensions involved are item, time, and region. You begin by studying the data
aggregated over all items and sales regions for each month, as shown in Figure 2.17.

To view the exception indicators, you would click on a button marked highlight exceptions on the screen. This
translates the SelfExp and InExp values into visual cues, displayed with each cell. The background color of each cell
is based on its SelfExp value. In addition, a box is drawn around each cell, where the thickness and color of the box
are a function of its InExp value. Thick boxes indicate high InExp values. In both cases, the darker the color is, the
greater the degree of exception is. For example, the dark thick boxes for sales during July, August, and September
signal the user to explore the lower level aggregations of these cells by drilling down.

Drill downs can be executed along the aggregated item or region dimensions. Which path has more exceptions?
To �nd this out, you select a cell of interest and trigger a path exception module that colors each dimension based
on the PathExp value of the cell. This value reects the degree of surprise of that path. Consider the PathExp
indicators for item and region in the upper left-hand corner of Figure 2.17. We see that the path along item contains
more exceptions, as indicated by the darker color.

A drill-down along item results in the cube slice of Figure 2.18, showing the sales over time for each item. At this
point, you are presented with many di�erent sales values to analyze. By clicking on the highlight exceptions button,
the visual cues are displayed, bringing focus towards the exceptions. Consider the sales di�erence of 41% for \Sony
b/w printers" in September. This cell has a dark background, indicating a high SelfExp value, meaning that the cell
is an exception. Consider now the the sales di�erence of -15% for \Sony b/w printers" in November, and of -11% in

34 CHAPTER 2. DATA WAREHOUSE AND OLAP TECHNOLOGY FOR DATA MINING

region
item all

all

Apr

0%

Jul

-1

Jun

3%

May

1%

Sep

-1%

Oct

2%

Nov

-4%

Dec

3%

Aug

-9%

Feb

1%

Mar

-1%

Sum of sales

Total

Jan
month

Figure 2.17: Change in sales over time.

Mar

-8%
0%
1%
0%
-2%
0%
-5%
0%

0%
-2%

2%
3%
2%
-2%
-1%
-1%
1%
3%
-1%
2%

AprFeb

9%
0%
-2%
0%
1%
0%
-2%
1%
3%
0%

Jun

14%
4%
8%
0%
3%
4%
-1%
-2%
4%
1%

Jul

-4%
-10%
0%
-1%
3%
2%
1%
-2%
6%
-2%

Aug

0%
-13%
-12%
-7%
-10%
-10%
5%
-5%
-11%
-2%

Sep

41%
0%
-9%
-2%
4%
-2%
-3%
3%
2%
-5%

Oct

4%
3%
1%
1%
0%
-5%
2%
1%
0%

-13%

Nov

-15%
-6%
-3%
-5%
-4%
-9%
-1%
-1%
-4%
-5%

Dec

-11%
4%
6%

-1%
3%
-1%
0%
0%
8%

1%

-5%
2%
3%
1%
-1%
3%
1%
0%
0%
3%

May

Sony color printer
HP b/w printer
HP color printer
IBM home computer
IBM laptop computer
Toshiba home computer
Toshiba laptop computer
Logitech mouse
Ergo-way mouse

Sony b/w printer

Jan
month

item
Avg sales

41% -13% -11%

5%

Figure 2.18: Change in sales for each item-time combination.

2.5. FURTHER DEVELOPMENT OF DATA CUBE TECHNOLOGY 35

Feb

-1%
-1%
-1%
4%

Apr

-1%
-9%
2%
-1%

May

0%
6%
-3%
-3%

Jun

3%
-1%
1%
5%

Jul

4%
-39%
18%
1%

Aug

-7%
9%
-2%
-18%

Sep

1%
-34%
11%
8%

Oct

0%
4%
-3%
5%

-3%
1%
-2%
0%

Mar Dec

-3%
7%
-1%
1%

-3%
1%
-2%
-8%

Nov

North
South
East
West

Avg sales
region Jan

month

item IBM home computer

-39%
18%

9%

-18%

-34%

Figure 2.19: Change in sales for the item \IBM home computer" per region.

December. The -11% value for December is marked as an exception, while the -15% value is not, even though -15%
is a bigger deviation than -11%. This is because the exception indicators consider all of the dimensions that a cell is
in. Notice that the December sales of most of the other items have a large positive value, while the November sales
do not. Therefore, by considering the position of the cell in the cube, the sales di�erence for \Sony b/w printers" in
December is exceptional, while the November sales di�erence of this item is not.

The InExp values can be used to indicate exceptions at lower levels that are not visible at the current level.
Consider the cells for \IBM home computers" in July and September. These both have a dark thick box around
them, indicating high InExp values. You may decide to further explore the sales of \IBM home computers" by
drilling down along region. The resulting sales di�erence by region is shown in Figure 2.19, where the highlight
exceptions option has been invoked. The visual cues displayed make it easy to instantly notice an exception for
the sales of \IBM home computers" in the southern region, where such sales have decreased by -39% and -34% in
July and September, respectively. These detailed exceptions were far from obvious when we were viewing the data
as an item-time group-by, aggregated over region in Figure 2.18. Thus, the InExp value is useful for searching for
exceptions at lower level cells of the cube. Since there are no other cells in Figure 2.19 having a high InExp value,
you may roll up back to the data of Figure 2.18, and choose another cell from which to drill down. In this way, the
exception indicators can be used to guide the discovery of interesting anomalies in the data. 2

\How are the exception values computed?" The SelfExp, InExp, and PathExp measures are based on a statistical
method for table analysis. They take into account all of the group-by (aggregations) in which a given cell value
participates. A cell value is considered an exception based on how much it di�ers from its expected value, where
its expected value is determined with a statistical model described below. The di�erence between a given cell value
and its expected value is called a residual. Intuitively, the larger the residual, the more the given cell value is an
exception. The comparison of residual values requires us to scale the values based on the expected standard deviation
associated with the residuals. A cell value is therefore considered an exception if its scaled residual value exceeds a
prespeci�ed threshold. The SelfExp, InExp, and PathExp measures are based on this scaled residual.

The expected value of a given cell is a function of the higher level group-by's of the given cell. For example,
given a cube with the three dimensions A;B, and C, the expected value for a cell at the ith position in A, the jth
position in B, and the kth position in C is a function of ; Ai ;

B
j ;

C
k ;

AB
ij ; ACik , and BCjk , which are coe�cients

of the statistical model used. The coe�cients reect how di�erent the values at more detailed levels are, based on
generalized impressions formed by looking at higher level aggregations. In this way, the exception quality of a cell
value is based on the exceptions of the values below it. Thus, when seeing an exception, it is natural for the user to
further explore the exception by drilling down.

\How can the data cube be e�ciently constructed for discovery-driven exploration?" This computation consists
of three phases. The �rst step involves the computation of the aggregate values de�ning the cube, such as sum or
count, over which exceptions will be found. There are several e�cient techniques for cube computation, such as
the multiway array aggregation technique discussed in Section 2.4.1. The second phase consists of model �tting, in

36 CHAPTER 2. DATA WAREHOUSE AND OLAP TECHNOLOGY FOR DATA MINING

which the coe�cients mentioned above are determined and used to compute the standardized residuals. This phase
can be overlapped with the �rst phase since the computations involved are similar. The third phase computes the
SelfExp, InExp, and PathExp values, based on the standardized residuals. This phase is computationally similar to
phase 1. Therefore, the computation of data cubes for discovery-driven exploration can be done e�ciently.

2.5.2 Complex aggregation at multiple granularities: Multifeature cubes

Data cubes facilitate the answering of data mining queries as they allow the computation of aggregate data at multiple
levels of granularity. In this section, you will learn about multifeature cubes which compute complex queries involving
multiple dependent aggregates at multiple granularities. These cubes are very useful in practice. Many complex data
mining queries can be answered by multifeature cubes without any signi�cant increase in computational cost, in
comparison to cube computation for simple queries with standard data cubes.

All of the examples in this section are from the Purchases data of AllElectronics, where an item is purchased in
a sales region on a business day (year, month, day). The shelf life in months of a given item is stored in shelf. The
item price and sales (in dollars) at a given region are stored in price and sales, respectively. To aid in our study of
multifeature cubes, let's �rst look at an example of a simple data cube.

Example 2.15 Query 1: A simple data cube query: Find the total sales in 1997, broken down by item, region,
and month, with subtotals for each dimension.

To answer Query 1, a data cube is constructed which aggregates the total sales at the following 8 di�erent levels
of granularity: f(item, region, month), (item, region), (item, month), (month, region), (item), (month), (region), ()g,
where () represents all. There are several techniques for computing such data cubes e�ciently (Section 2.4.1). 2

Query 1 uses a data cube like that studied so far in this chapter. We call such a data cube a simple data cube
since it does not involve any dependent aggregates.

\What is meant by \dependent aggregates"?" We answer this by studying the following example of a complex
query.

Example 2.16 Query 2: A complex query: Grouping by all subsets of fitem, region, monthg, �nd the maximum
price in 1997 for each group, and the total sales among all maximum price tuples.

The speci�cation of such a query using standard SQL can be long, repetitive, and di�cult to optimize and
maintain. Alternatively, Query 2 can be speci�ed concisely using an extended SQL syntax as follows:

select item, region, month, MAX(price), SUM(R.sales)
from Purchases
where year = 1997
cube by item, region, month: R
such that R.price = MAX(price)

The tuples representing purchases in 1997 are �rst selected. The cube by clause computes aggregates (or group-
by's) for all possible combinations of the attributes item, region, and month. It is an n-dimensional generalization
of the group by clause. The attributes speci�ed in the cube by clause are the grouping attributes. Tuples with the
same value on all grouping attributes form one group. Let the groups be g1; ::; gr. For each group of tuples gi, the
maximum price maxgi among the tuples forming the group is computed. The variable R is a grouping variable,
ranging over all tuples in group gi whose price is equal to maxgi (as speci�ed in the such that clause). The sum of
sales of the tuples in gi that R ranges over is computed, and returned with the values of the grouping attributes of
gi. The resulting cube is a multifeature cube in that it supports complex data mining queries for which multiple
dependent aggregates are computed at a variety of granularities. For example, the sum of sales returned in Query 2
is dependent on the set of maximum price tuples for each group. 2

Let's look at another example.

Example 2.17 Query 3: An even more complex query: Grouping by all subsets of fitem, region, monthg,
�nd the maximumprice in 1997 for each group. Among the maximumprice tuples, �nd the minimum and maximum

2.5. FURTHER DEVELOPMENT OF DATA CUBE TECHNOLOGY 37

{=MIN(R1.shelf)}

R2

{=MAX(R1.shelf)}

R3

R1

R0

{=MAX(price)}

Figure 2.20: A multifeature cube graph for Query 3.

item shelf lives. Also �nd the fraction of the total sales due to tuples that have minimum shelf life within the set of
all maximum price tuples, and the fraction of the total sales due to tuples that have maximum shelf life within the
set of all maximum price tuples.

The multifeature cube graph of Figure 2.20 helps illustrate the aggregate dependencies in the query. There
is one node for each grouping variable, plus an additional initial node, R0. Starting from node R0, the set of
maximum price tuples in 1997 is �rst computed (node R1). The graph indicates that grouping variables R2 and R3
are \dependent" on R1, since a directed line is drawn from R1 to each of R2 and R3. In a multifeature cube graph,
a directed line from grouping variable Ri to Rj means that Rj always ranges over a subset of the tuples that Ri

ranges for. When expressing the query in extended SQL, we write \Rj in Ri" as shorthand to refer to this case. For
example, the minimum shelf life tuples at R2 range over the maximum price tuples at R1, i.e., R2 in R1. Similarly,
the maximum shelf life tuples at R3 range over the maximum price tuples at R1, i.e., R3 in R1.

From the graph, we can express Query 3 in extended SQL as follows:

select item, region, month, MAX(price), MIN(R1.shelf), MAX(R1.shelf),
SUM(R1.sales), SUM(R2.sales), SUM(R3.sales)

from Purchases
where year = 1997
cube by item, region, month: R1, R2, R3
such that R1.price = MAX(price) and

R2 in R1 and R2.shelf = MIN(R1.shelf) and
R3 in R1 and R3.shelf = MAX(R1.shelf)

2

\How can multifeature cubes be computed e�ciently?" The computation of a multifeature cube depends on the
types of aggregate functions used in the cube. Recall in Section 2.2.4, we saw that aggregate functions can be
categorized as either distributive (such as count(), sum(), min(), and max()), algebraic (such as avg(), min N(),

max N()), or holistic (such as median(), mode(), and rank()). Multifeature cubes can be organized into the same
categories.

Intuitively, Query 2 is a distributive multifeature cube since we can distribute its computation by incrementally
generating the output of the cube at a higher level granularity using only the output of the cube at a lower level
granularity. Similarly, Query 3 is also distributive. Some multifeature cubes that are not distributive may be
\converted" by adding aggregates to the select clause so that the resulting cube is distributive. For example, suppose
that the select clause for a given multifeature cube has AVG(sales), but neither COUNT(sales) nor SUM(sales).
By adding SUM(sales) to the select clause, the resulting data cube is distributive. The original cube is therefore
algebraic. In the new distributive cube, the average sales at a higher level granularity can be computed from the
average and total sales at lower level granularities. A cube that is neither distributive nor algebraic is holistic.

38 CHAPTER 2. DATA WAREHOUSE AND OLAP TECHNOLOGY FOR DATA MINING

The type of multifeature cube determines the approach used in its computation. There are a number of methods
for the e�cient computation of data cubes (Section 2.4.1). The basic strategy of these algorithms is to exploit the
lattice structure of the multiple granularities de�ning the cube, where higher level granularities are computed from
lower level granularities. This approach suits distributive multifeature cubes, as described above. For example, in
Query 2, the computation of MAX(price) at a higher granularity group can be done by taking the maximum of
all of the MAX(price) values at the lower granularity groups. Similarly, SUM(sales) can be computed for a higher
level group by summing all of the SUM(sales) values in its lower level groups. Some algorithms for e�cient cube
construction employ optimization techniques based on the estimated size of answers of groups within a data cube.
Since the output size for each group in a multifeature cube is constant, the same estimation techniques can be
used to estimate the size of intermediate results. Thus, the basic algorithms for e�cient computation of simple
data cubes can be used to compute distributive multifeature cubes for complex queries without any increase in I/O
complexity. There may be a negligible increase in the CPU cost if the aggregate function of the multifeature cube
is more complex than, say, a simple SUM(). Algebraic multifeature cubes must �rst be transformed into distributive
multifeature cubes in order for these algorithms to apply. The computation of holistic multifeature cubes is sometimes
signi�cantly more expensive than the computation of distributive cubes, although the CPU cost involved is generally
acceptable. Therefore, multifeature cubes can be used to answer complex queries with very little additional expense
in comparison to simple data cube queries.

2.6 From data warehousing to data mining

2.6.1 Data warehouse usage

Data warehouses and data marts are used in a wide range of applications. Business executives in almost every
industry use the data collected, integrated, preprocessed, and stored in data warehouses and data marts to perform
data analysis and make strategic decisions. In many �rms, data warehouses are used as an integral part of a plan-

execute-assess \closed-loop" feedback system for enterprise management. Data warehouses are used extensively in
banking and �nancial services, consumer goods and retail distribution sectors, and controlled manufacturing, such
as demand-based production.

Typically, the longer a data warehouse has been in use, the more it will have evolved. This evolution takes
place throughout a number of phases. Initially, the data warehouse is mainly used for generating reports and
answering prede�ned queries. Progressively, it is used to analyze summarized and detailed data, where the results
are presented in the form of reports and charts. Later, the data warehouse is used for strategic purposes, performing
multidimensional analysis and sophisticated slice-and-dice operations. Finally, the data warehouse may be employed
for knowledge discovery and strategic decision making using data mining tools. In this context, the tools for data
warehousing can be categorized into access and retrieval tools, database reporting tools, data analysis tools, and data

mining tools.

Business users need to have the means to know what exists in the data warehouse (through metadata), how to
access the contents of the data warehouse, how to examine the contents using analysis tools, and how to present the
results of such analysis.

There are three kinds of data warehouse applications: information processing, analytical processing, and data

mining:

� Information processing supports querying, basic statistical analysis, and reporting using crosstabs, tables,
charts or graphs. A current trend in data warehouse information processing is to construct low cost Web-based
accessing tools which are then integrated with Web browsers.

� Analytical processing supports basic OLAP operations, including slice-and-dice, drill-down, roll-up, and
pivoting. It generally operates on historical data in both summarized and detailed forms. The major strength
of on-line analytical processing over information processing is the multidimensional data analysis of data ware-
house data.

� Data mining supports knowledge discovery by �nding hidden patterns and associations, constructing ana-
lytical models, performing classi�cation and prediction, and presenting the mining results using visualization
tools.

2.6. FROM DATA WAREHOUSING TO DATA MINING 39

\How does data mining relate to information processing and on-line analytical processing?"

Information processing, based on queries, can �nd useful information. However, answers to such queries reect
the information directly stored in databases or computable by aggregate functions. They do not reect sophisticated
patterns or regularities buried in the database. Therefore, information processing is not data mining.

On-line analytical processing comes a step closer to data mining since it can derive information summarized
at multiple granularities from user-speci�ed subsets of a data warehouse. Such descriptions are equivalent to the
class/concept descriptions discussed in Chapter 1. Since data mining systems can also mine generalized class/concept
descriptions, this raises some interesting questions: Do OLAP systems perform data mining? Are OLAP systems
actually data mining systems?

The functionalities of OLAP and data mining can be viewed as disjoint: OLAP is a data summarization/aggregation
tool which helps simplify data analysis, while data mining allows the automated discovery of implicit patterns and
interesting knowledge hidden in large amounts of data. OLAP tools are targeted toward simplifying and supporting
interactive data analysis, but the goal of data mining tools is to automate as much of the process as possible, while
still allowing users to guide the process. In this sense, data mining goes one step beyond traditional on-line analytical
processing.

An alternative and broader view of data miningmay be adopted in which data mining covers both data description
and data modeling. Since OLAP systems can present general descriptions of data from data warehouses, OLAP
functions are essentially for user-directed data summary and comparison (by drilling, pivoting, slicing, dicing, and
other operations). These are, though limited, data mining functionalities. Yet according to this view, data mining
covers a much broader spectrum than simple OLAP operations because it not only performs data summary and
comparison, but also performs association, classi�cation, prediction, clustering, time-series analysis, and other data
analysis tasks.

Data mining is not con�ned to the analysis of data stored in data warehouses. It may analyze data existing at more
detailed granularities than the summarized data provided in a data warehouse. It may also analyze transactional,
textual, spatial, and multimedia data which are di�cult to model with current multidimensional database technology.
In this context, data mining covers a broader spectrum than OLAP with respect to data mining functionality and
the complexity of the data handled.

Since data mining involves more automated and deeper analysis than OLAP, data mining is expected to have
broader applications. Data mining can help business managers �nd and reach more suitable customers, as well as
gain critical business insights that may help to drive market share and raise pro�ts. In addition, data mining can
help managers understand customer group characteristics and develop optimal pricing strategies accordingly, correct
item bundling based not on intuition but on actual item groups derived from customer purchase patterns, reduce
promotional spending and at the same time, increase net e�ectiveness of promotions overall.

2.6.2 From on-line analytical processing to on-line analytical mining

In the �eld of data mining, substantial research has been performed for data mining at various platforms, including
transaction databases, relational databases, spatial databases, text databases, time-series databases, at �les, data
warehouses, etc.

Among many di�erent paradigms and architectures of data mining systems, On-Line Analytical Mining

(OLAM) (also called OLAP mining), which integrates on-line analytical processing (OLAP) with data mining
and mining knowledge in multidimensional databases, is particularly important for the following reasons.

1. High quality of data in data warehouses. Most data mining tools need to work on integrated, consistent,
and cleaned data, which requires costly data cleaning, data transformation, and data integration as prepro-
cessing steps. A data warehouse constructed by such preprocessing serves as a valuable source of high quality
data for OLAP as well as for data mining. Notice that data mining may also serve as a valuable tool for data
cleaning and data integration as well.

2. Available informationprocessing infrastructure surrounding data warehouses. Comprehensive infor-
mation processing and data analysis infrastructures have been or will be systematically constructed surrounding
data warehouses, which include accessing, integration, consolidation, and transformation of multiple, hetero-
geneous databases, ODBC/OLEDB connections, Web-accessing and service facilities, reporting and OLAP

40 CHAPTER 2. DATA WAREHOUSE AND OLAP TECHNOLOGY FOR DATA MINING

Warehouse
DataData

Base

Data
Meta

User

Engine
OLAM OLAP

Engine

GUI API

Data cleaning
data integration filtering

Cube API

Database API

Data

Cube

Figure 2.21: An integrated OLAM and OLAP architecture.

analysis tools. It is prudent to make the best use of the available infrastructures rather than constructing
everything from scratch.

3. OLAP-based exploratory data analysis. E�ective data mining needs exploratory data analysis. A user
will often want to traverse through a database, select portions of relevant data, analyze them at di�erent gran-
ularities, and present knowledge/results in di�erent forms. On-line analytical mining provides facilities for data
mining on di�erent subsets of data and at di�erent levels of abstraction, by drilling, pivoting, �ltering, dicing
and slicing on a data cube and on some intermediate data mining results. This, together with data/knowledge
visualization tools, will greatly enhance the power and exibility of exploratory data mining.

4. On-line selection of data mining functions. Often a user may not know what kinds of knowledge that she
wants to mine. By integrating OLAP with multiple data mining functions, on-line analytical mining provides
users with the exibility to select desired data mining functions and swap data mining tasks dynamically.

Architecture for on-line analytical mining

An OLAM engine performs analytical mining in data cubes in a similar manner as an OLAP engine performs on-line
analytical processing. An integrated OLAM and OLAP architecture is shown in Figure 2.21, where the OLAM and
OLAP engines both accept users' on-line queries (or commands) via a User GUI API and work with the data cube
in the data analysis via a Cube API. A metadata directory is used to guide the access of the data cube. The data
cube can be constructed by accessing and/or integrating multiple databases and/or by �ltering a data warehouse via
a Database API which may support OLEDB or ODBC connections. Since an OLAM engine may perform multiple
data mining tasks, such as concept description, association, classi�cation, prediction, clustering, time-series analysis,
etc., it usually consists of multiple, integrated data mining modules and is more sophisticated than an OLAP engine.

The following chapters of this book are devoted to the study of data mining techniques. As we have seen, the
introduction to data warehousing and OLAP technology presented in this chapter is essential to our study of data
mining. This is because data warehousing provides users with large amounts of clean, organized, and summarized
data, which greatly facilitates data mining. For example, rather than storing the details of each sales transaction, a
data warehouse may store a summary of the transactions per item type for each branch, or, summarized to a higher
level, for each country. The capability of OLAP to provide multiple and dynamic views of summarized data in a
data warehouse sets a solid foundation for successful data mining.

2.7. SUMMARY 41

Moreover, we also believe that data mining should be a human-centered process. Rather than asking a data
mining system to generate patterns and knowledge automatically, a user will often need to interact with the system
to perform exploratory data analysis. OLAP sets a good example for interactive data analysis, and provides the
necessary preparations for exploratory data mining. Consider the discovery of association patterns, for example.
Instead of mining associations at a primitive (i.e., low) data level among transactions, users should be allowed to
specify roll-up operations along any dimension. For example, a user may like to roll-up on the item dimension to go
from viewing the data for particular TV sets that were purchased to viewing the brands of these TVs, such as SONY
or Panasonic. Users may also navigate from the transaction level to the customer level or customer-type level in the
search for interesting associations. Such an OLAP-style of data mining is characteristic of OLAP mining.

In our study of the principles of data mining in the following chapters, we place particular emphasis on OLAP
mining, that is, on the integration of data mining and OLAP technology.

2.7 Summary

� A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile collection of data organized
in support of management decision making. Several factors distinguish data warehouses from operational
databases. Since the two systems provide quite di�erent functionalities and require di�erent kinds of data, it
is necessary to maintain data warehouses separately from operational databases.

� A multidimensional data model is typically used for the design of corporate data warehouses and depart-

mental data marts. Such a model can adopt either a star schema, snowake schema, or fact constellation
schema. The core of the multidimensional model is the data cube, which consists of a large set of facts (or
measures) and a number of dimensions. Dimensions are the entities or perspectives with respect to which an
organization wants to keep records, and are hierarchical in nature.

� Concept hierarchies organize the values of attributes or dimensions into gradual levels of abstraction. They
are useful in mining at multiple levels of abstraction.

� On-line analytical processing (OLAP) can be performed in data warehouses/marts using the multidimen-
sional data model. Typical OLAP operations include roll-up, drill-(down, cross, through), slice-and-dice, pivot
(rotate), as well as statistical operations such as ranking, computing moving averages and growth rates, etc.
OLAP operations can be implemented e�ciently using the data cube structure.

� Data warehouses often adopt a three-tier architecture. The bottom tier is a warehouse database server,
which is typically a relational database system. The middle tier is an OLAP server, and the top tier is a client,
containing query and reporting tools.

� OLAP servers may use Relational OLAP (ROLAP), or Multidimensional OLAP (MOLAP), or Hy-
brid OLAP (HOLAP). A ROLAP server uses an extended relational DBMS that maps OLAP operations
on multidimensional data to standard relational operations. A MOLAP server maps multidimensional data
views directly to array structures. A HOLAP server combines ROLAP and MOLAP. For example, it may use
ROLAP for historical data while maintaining frequently accessed data in a separate MOLAP store.

� A data cube consists of a lattice of cuboids, each corresponding to a di�erent degree of summarization of the
given multidimensional data. Partial materialization refers to the selective computation of a subset of the
cuboids in the lattice. Full materialization refers to the computation of all of the cuboids in the lattice. If
the cubes are implemented using MOLAP, then multiway array aggregation can be used. This technique
\overlaps" some of the aggregation computation so that full materialization can be computed e�ciently.

� OLAP query processing can be made more e�cient with the use of indexing techniques. In bitmap indexing,
each attribute has its own bimap vector. Bitmap indexing reduces join, aggregation, and comparison operations
to bit arithmetic. Join indexing registers the joinable rows of two or more relations from a relational database,
reducing the overall cost of OLAP join operations. Bitmapped join indexing, which combines the bitmap
and join methods, can be used to further speed up OLAP query processing.

� Data warehouse metadata are data de�ning the warehouse objects. A metadata repository provides details
regarding the warehouse structure, data history, the algorithms used for summarization, mappings from the
source data to warehouse form, system performance, and business terms and issues.

42 CHAPTER 2. DATA WAREHOUSE AND OLAP TECHNOLOGY FOR DATA MINING

� A data warehouse contains back-end tools and utilities for populating and refreshing the warehouse. These
cover data extraction, data cleaning, data transformation, loading, refreshing, and warehouse management.

� Discovery-driven exploration of data cubes uses precomputed measures and visual cues to indicate data
exceptions, guiding the user in the data analysis process, at all levels of aggregation. Multifeature cubes

compute complex queries involvingmultiple dependent aggregates at multiple granularities. The computation of
cubes for discovery-driven exploration and of multifeature cubes can be achieved e�ciently by taking advantage
of e�cient algorithms for standard data cube computation.

� Data warehouses are used for information processing (querying and reporting), analytical processing (which
allows users to navigate through summarized and detailed data by OLAP operations), and data mining (which
supports knowledge discovery). OLAP-based data mining is referred to as OLAPmining, or on-line analytical
mining (OLAM), which emphasizes the interactive and exploratory nature of OLAP mining.

Exercises

1. State why, for the integration of multiple, heterogeneous information sources, many companies in industry
prefer the update-driven approach (which constructs and uses data warehouses), rather than the query-driven
approach (which applies wrappers and integrators). Describe situations where the query-driven approach is
preferable over the update-driven approach.

2. Design a data warehouse for a regional weather bureau. The weather bureau has about 1,000 probes which are
scattered throughout various land and ocean locations in the region to collect basic weather data, including
air pressure, temperature, and precipitation at each hour. All data are sent to the central station, which has
collected such data for over 10 years. Your design should facilitate e�cient querying and on-line analytical
processing, and derive general weather patterns in multidimensional space.

3. What are the di�erences between the three typical methods for modelingmultidimensional data: the star model,
the snowake model, and the fact constellation model? What is the di�erence between the star warehouse
model and the starnet query model? Use an example to explain your point(s).

4. A popular data warehouse implementation is to construct a multidimensional database, known as a data cube.
Unfortunately, this may often generate a huge, yet very sparse multidimensional matrix.

(a) Present an example, illustrating such a huge and sparse data cube.

(b) Design an implementation method which can elegantly overcome this sparse matrix problem. Note that
you need to explain your data structures in detail and discuss the space needed, as well as how to retrieve
data from your structures, and how to handle incremental data updates.

5. Data warehouse design:

(a) Enumerate three classes of schemas that are popularly used for modeling data warehouses.

(b) Draw a schema diagram for a data warehouse which consists of three dimensions: time, doctor, and patient,
and two measures: count, and charge, where charge is the fee that a doctor charges a patient for a visit.

(c) Starting with the base cuboid (day; doctor; patient), what speci�c OLAP operations should be performed
in order to list the total fee collected by each doctor in VGH (Vancouver General Hospital) in 1997?

(d) To obtain the same list, write an SQL query assuming the data is stored in a relational database with the
schema.

fee(day;month; year; doctor; hospital; patient; count; charge):

6. Computing measures in a data cube:

(a) Enumerate three categories of measures, based on the kind of aggregate functions used in computing a
data cube.

(b) For a data cube with three dimensions: time, location, and product, which category does the function
variance belong to? Describe how to compute it if the cube is partitioned into many chunks.

Hint: The formula for computing variance is: 1
n

Pn

i=1(xi)
2 � �xi2, where �xi is the average of xi's.

2.7. SUMMARY 43

(c) Suppose the function is \top 10 sales". Discuss how to e�ciently compute this measure in a data cube.

7. Suppose that one needs to record three measures in a data cube: min, average, and median. Design an e�cient
computation and storage method for each measure given that the cube allows data to be deleted incrementally
(i.e., in small portions at a time) from the cube.

8. In data warehouse technology, a multiple dimensional view can be implemented by a multidimensional database
technique (MOLAP), or by a relational database technique (ROLAP), or a hybrid database technique (HO-
LAP).

(a) Briey describe each implementation technique.

(b) For each technique, explain how each of the following functions may be implemented:

i. The generation of a data warehouse (including aggregation).

ii. Roll-up.

iii. Drill-down.

iv. Incremental updating.

Which implementation techniques do you prefer, and why?

9. Suppose that a data warehouse contains 20 dimensions each with about 5 levels of granularity.

(a) Users are mainly interested in four particular dimensions, each having three frequently accessed levels for
rolling up and drilling down. How would you design a data cube structure to support this preference
e�ciently?

(b) At times, a user may want to drill-through the cube, down to the raw data for one or two particular
dimensions. How would you support this feature?

10. Data cube computation: Suppose a base cuboid has 3 dimensions, (A;B;C), with the number of cells shown
below: jAj = 1; 000; 000, jBj = 100, and jCj = 1; 000. Suppose each dimension is partitioned evenly into 10
portions for chunking.

(a) Assuming each dimension has only one level, draw the complete lattice of the cube.

(b) If each cube cell stores one measure with 4 bytes, what is the total size of the computed cube if the cube
is dense?

(c) If the cube is very sparse, describe an e�ective multidimensional array structure to store the sparse cube.

(d) State the order for computing the chunks in the cube which requires the least amount of space, and
compute the total amount of main memory space required for computing the 2-D planes.

11. In both data warehousing and data mining, it is important to have some hierarchy information associated with
each dimension. If such a hierarchy is not given, discuss how to generate such a hierarchy automatically for
the following cases:

(a) a dimension containing only numerical data.

(b) a dimension containing only categorical data.

12. Suppose that a data cube has 2 dimensions, (A;B), and each dimension can be generalized through 3 levels
(with the top-most level being all). That is, starting with level A0, A can be generalized to A1, then to A2, and
then to all. How many di�erent cuboids (i.e., views) can be generated for this cube? Sketch a lattice of these
cuboids to show how you derive your answer. Also, give a general formula for a data cube with D dimensions,
each starting at a base level and going up through L levels, with the top-most level being all.

13. Consider the following multifeature cube query: Grouping by all subsets of fitem, region, monthg, �nd the
minimum shelf life in 1997 for each group, and the fraction of the total sales due to tuples whose price is less
than $100, and whose shelf life is within 25% of the minimum shelf life, and within 50% of the minimum shelf
life.

(a) Draw the multifeature cube graph for the query.

44 CHAPTER 2. DATA WAREHOUSE AND OLAP TECHNOLOGY FOR DATA MINING

(b) Express the query in extended SQL.

(c) Is this a distributive multifeature cube? Why or why not?

14. What are the di�erences between the three main types of data warehouse usage: information processing,
analytical processing, and data mining? Discuss the motivation behind OLAP mining (OLAM).

Bibliographic Notes

There are a good number of introductory level textbooks on data warehousing and OLAP technology, including
Inmon [15], Kimball [16], Berson and Smith [4], and Thomsen [24]. Chaudhuri and Dayal [6] provide a general
overview of data warehousing and OLAP technology.

The history of decision support systems can be traced back to the 1960s. However, the proposal of the construction
of large data warehouses for multidimensional data analysis is credited to Codd [7] who coined the term OLAP for
on-line analytical processing. The OLAP council was established in 1995. Widom [26] identi�ed several research
problems in data warehousing. Kimball [16] provides an overview of the de�ciencies of SQL regarding the ability to
support comparisons that are common in the business world.

The DMQL data mining query language was proposed by Han et al. [11] Data mining query languages are
further discussed in Chapter 4. Other SQL-based languages for data mining are proposed in Imielinski, Virmani,
and Abdulghani [14], Meo, Psaila, and Ceri [17], and Baralis and Psaila [3].

Gray et al. [9, 10] proposed the data cube as a relational aggregation operator generalizing group-by, crosstabs, and
sub-totals. Harinarayan, Rajaraman, and Ullman [13] proposed a greedy algorithm for the partial materialization of
cuboids in the computation of a data cube. Agarwal et al. [1] proposed several methods for the e�cient computation
of multidimensional aggregates for ROLAP servers. The chunk-based multiway array aggregation method described
in Section 2.4.1 for data cube computation in MOLAP was proposed in Zhao, Deshpande, and Naughton [27].
Additional methods for the fast computation of data cubes can be found in Beyer and Ramakrishnan [5], and Ross
and Srivastava [19]. Sarawagi and Stonebraker [22] developed a chunk-based computation technique for the e�cient
organization of large multidimensional arrays.

For work on the selection of materialized cuboids for e�cient OLAP query processing, see Harinarayan, Rajara-
man, and Ullman [13], and Sristava et al. [23]. Methods for cube size estimation can be found in Beyer and
Ramakrishnan [5], Ross and Srivastava [19], and Deshpande et al. [8]. Agrawal, Gupta, and Sarawagi [2] proposed
operations for modeling multidimensional databases.

The use of join indices to speed up relational query processing was proposed by Valduriez [25]. O'Neil and Graefe
[18] proposed a bitmapped join index method to speed-up OLAP-based query processing.

There are some recent studies on the implementation of discovery-oriented data cubes for data mining. This
includes the discovery-driven exploration of OLAP data cubes by Sarawagi, Agrawal, and Megiddo [21], and the con-
struction of multifeature data cubes by Ross, Srivastava, and Chatziantoniou [20]. For a discussion of methodologies
for OLAM (On-Line Analytical Mining), see Han et al. [12].

Bibliography

[1] S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and S. Sarawagi.
On the computation of multidimensional aggregates. In Proc. 1996 Int. Conf. Very Large Data Bases, pages
506{521, Bombay, India, Sept. 1996.

[2] R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. In Proc. 1997 Int. Conf. Data

Engineering, pages 232{243, Birmingham, England, April 1997.

[3] E. Baralis and G. Psaila. Designing templates for mining association rules. Journal of Intelligent Information
Systems, 9:7{32, 1997.

[4] A. Berson and S. J. Smith. Data Warehousing, Data Mining, and OLAP. New York: McGraw-Hill, 1997.

[5] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cubes. In Proc. 1999 ACM-

SIGMOD Int. Conf. Management of Data, pages 359{370, Philadelphia, PA, June 1999.

[6] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. ACM SIGMOD Record,
26:65{74, 1997.

[7] E. F Codd, S. B. Codd, and C. T. Salley. Providing OLAP (on-line analytical processing) to user-analysts: An
IT mandate. In E. F. Codd & Associates available at http://www.arborsoft.com/OLAP.html, 1993.

[8] P. Deshpande, J. Naughton, K. Ramasamy, A. Shukla, K. Tufte, and Y. Zhao. Cubing algorithms, storage
estimation, and storage and processing alternatives for olap. Data Engineering Bulletin, 20:3{11, 1997.

[9] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational operator generalizing group-by,
cross-tab and sub-totals. In Proc. 1996 Int. Conf. Data Engineering, pages 152{159, New Orleans, Louisiana,
Feb. 1996.

[10] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh.
Data cube: A relational aggregation operator generalizing group-by, cross-tab and sub-totals. Data Mining and

Knowledge Discovery, 1:29{54, 1997.

[11] J. Han, Y. Fu, W. Wang, J. Chiang, W. Gong, K. Koperski, D. Li, Y. Lu, A. Rajan, N. Stefanovic, B. Xia, and
O. R. Za��ane. DBMiner: A system for mining knowledge in large relational databases. In Proc. 1996 Int. Conf.

Data Mining and Knowledge Discovery (KDD'96), pages 250{255, Portland, Oregon, August 1996.

[12] J. Han, Y. J. Tam, E. Kim, H. Zhu, and S. H. S. Chee. Methodologies for integration of data mining and on-line
analytical processing in data warehouses. In submitted to DAMI, 1999.

[13] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes e�ciently. In Proc. 1996 ACM-

SIGMOD Int. Conf. Management of Data, pages 205{216, Montreal, Canada, June 1996.

[14] T. Imielinski, A. Virmani, and A. Abdulghani. DataMine { application programming interface and query
language for KDD applications. In Proc. 1996 Int. Conf. Data Mining and Knowledge Discovery (KDD'96),
pages 256{261, Portland, Oregon, August 1996.

[15] W. H. Inmon. Building the Data Warehouse. QED Technical Publishing Group, Wellesley, Massachusetts, 1992.

[16] R. Kimball. The Data Warehouse Toolkit. John Wiley & Sons, New York, 1996.

45

46 BIBLIOGRAPHY

[17] R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association rules. In Proc. 1996 Int. Conf.

Very Large Data Bases, pages 122{133, Bombay, India, Sept. 1996.

[18] P. O'Neil and G. Graefe. Multi-table joins through bitmapped join indices. SIGMOD Record, 24:8{11, September
1995.

[19] K. Ross and D. Srivastava. Fast computation of sparse datacubes. In Proc. 1997 Int. Conf. Very Large Data

Bases, pages 116{125, Athens, Greece, Aug. 1997.

[20] K. A. Ross, D. Srivastava, and D. Chatziantoniou. Complex aggregation at multiple granularities. In Proc. Int.

Conf. of Extending Database Technology (EDBT'98), pages 263{277, Valencia, Spain, March 1998.

[21] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven exploration of OLAP data cubes. In Proc. Int.

Conf. of Extending Database Technology (EDBT'98), pages 168{182, Valencia, Spain, March 1998.

[22] S. Sarawagi and M. Stonebraker. E�cient organization of large multidimensional arrays. In Proc. 1994 Int.

Conf. Data Engineering, pages 328{336, Feb. 1994.

[23] D. Sristava, S. Dar, H. V. Jagadish, and A. V. Levy. Answering queries with aggregation using views. In Proc.

1996 Int. Conf. Very Large Data Bases, pages 318{329, Bombay, India, September 1996.

[24] E. Thomsen. OLAP Solutions: Building Multidimensional Information Systems. John Wiley & Sons, 1997.

[25] P. Valduriez. Join indices. In ACM Trans. Database System, volume 12, pages 218{246, 1987.

[26] J. Widom. Research problems in data warehousing. In Proc. 4th Int. Conf. Information and Knowledge Man-

agement, pages 25{30, Baltimore, Maryland, Nov. 1995.

[27] Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-based algorithm for simultaneous multidimensional
aggregates. In Proc. 1997 ACM-SIGMOD Int. Conf. Management of Data, pages 159{170, Tucson, Arizona,
May 1997.

Bzupages.com

