
SOLUTIONS MANUAL

COMPUTER ORGANIZATION AND
ARCHITECTURE

DESIGNING FOR PERFORMANCE
SEVENTH EDITION

WILLIAM STALLINGS

Copyright 2005: William Stallings

www.bzupages.com

-2-

© 2005 by William Stallings

All rights reserved. No part of this document may
be reproduced, in any form or by any means, or
posted on the Internet, without permission in
writing from the author.

-3-

NOTICE

This manual contains solutions to all of the review questions and
homework problems in Computer Organization and Architecture,
Seventh Edition. If you spot an error in a solution or in the wording of a
problem, I would greatly appreciate it if you would forward the
information via email to ws@shore.net. An errata sheet for this manual,
if needed, is available at WilliamStallings.com

W.S.

-4-

TABLE OF CONTENTS

Chapter 2: Computer Evolution and Performance...5
Chapter 3: Computer Function and Interconnection ...9
Chapter 4: Cache Memory..14
Chapter 5: Internal Memory ..27
Chapter 6: External Memory..33
Chapter 7: Input/Output ...37
Chapter 8: Operating System Support ...43
Chapter 9: Computer Arithmetic ..48
Chapter 10: Instruction Sets: Characteristics and Functions.....................................61
Chapter 11: Instruction Sets: Addressing Modes and Formats72
Chapter 12: Processor Structure and Function..77
Chapter 13: Reduced Instruction Set Computers (RISCs) ...83
Chapter 14: Instruction-Level Parallelism and Superscalar Processors87
Chapter 15: The IA-64 Architecture..93
Chapter 16: Control Unit Operation ...97
Chapter 17: Microprogrammed Control ..100
Chapter 18: Parallel Processing ...103
Appendix A: Number Systems ..112
Appendix B: Digital Logic..113

-5-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

2.1 In a stored program computer, programs are represented in a form suitable for
storing in memory alongside the data. The computer gets its instructions by reading
them from memory, and a program can be set or altered by setting the values of a
portion of memory.

2.2 A main memory, which stores both data and instructions: an arithmetic and logic
unit (ALU) capable of operating on binary data; a control unit, which interprets the
instructions in memory and causes them to be executed; and input and output
(I/O) equipment operated by the control unit.

2.3 Gates, memory cells, and interconnections among gates and memory cells.

2.4 Moore observed that the number of transistors that could be put on a single chip
was doubling every year and correctly predicted that this pace would continue into
the near future.

2.5 Similar or identical instruction set: In many cases, the same set of machine
instructions is supported on all members of the family. Thus, a program that
executes on one machine will also execute on any other. Similar or identical
operating system: The same basic operating system is available for all family
members. Increasing speed: The rate of instruction execution increases in going
from lower to higher family members. Increasing Number of I/O ports: In going
from lower to higher family members. Increasing memory size: In going from
lower to higher family members. Increasing cost: In going from lower to higher
family members.

2.6 In a microprocessor, all of the components of the CPU are on a single chip.

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

2.1 This program is developed in [HAYE98]. The vectors A, B, and C are each stored in
1,000 contiguous locations in memory, beginning at locations 1001, 2001, and 3001,
respectively. The program begins with the left half of location 3. A counting
variable N is set to 999 and decremented after each step until it reaches –1. Thus,
the vectors are processed from high location to low location.

CHAPTER 2
COMPUTER EVOLUTION AND

PERFORMANCE

-6-

Location Instruction Comments
0 999 Constant (count N)
1 1 Constant
2 1000 Constant
3L LOAD M(2000) Transfer A(I) to AC
3R ADD M(3000) Compute A(I) + B(I)
4L STOR M(4000) Transfer sum to C(I)
4R LOAD M(0) Load count N
5L SUB M(1) Decrement N by 1
5R JUMP+ M(6, 20:39) Test N and branch to 6R if nonnegative
6L JUMP M(6, 0:19) Halt
6R STOR M(0) Update N
7L ADD M(1) Increment AC by 1
7R ADD M(2)
8L STOR M(3, 8:19) Modify address in 3L
8R ADD M(2)
9L STOR M(3, 28:39) Modify address in 3R
9R ADD M(2)
10L STOR M(4, 8:19) Modify address in 4L
10R JUMP M(3, 0:19) Branch to 3L

2.2 a.
Opcode Operand

00000001 000000000010

b. First, the CPU must make access memory to fetch the instruction. The
instruction contains the address of the data we want to load. During the execute
phase accesses memory to load the data value located at that address for a total
of two trips to memory.

2.3 To read a value from memory, the CPU puts the address of the value it wants into
the MAR. The CPU then asserts the Read control line to memory and places the
address on the address bus. Memory places the contents of the memory location
passed on the data bus. This data is then transferred to the MBR. To write a value to
memory, the CPU puts the address of the value it wants to write into the MAR. The
CPU also places the data it wants to write into the MBR. The CPU then asserts the
Write control line to memory and places the address on the address bus and the
data on the data bus. Memory transfers the data on the data bus into the
corresponding memory location.

-7-

2.4
Address Contents
08A

08B

08C

08D

LOAD M(0FA)
STOR M(0FB)
LOAD M(0FA)
JUMP +M(08D)
LOAD –M(0FA)
STOR M(0FB)

This program will store the absolute value of content at memory location 0FA into
memory location 0FB.

2.5 All data paths to/from MBR are 40 bits. All data paths to/from MAR are 12 bits.
Paths to/from AC are 40 bits. Paths to/from MQ are 40 bits.

2.6 The purpose is to increase performance. When an address is presented to a memory
module, there is some time delay before the read or write operation can be
performed. While this is happening, an address can be presented to the other
module. For a series of requests for successive words, the maximum rate is
doubled.

2.7 The discrepancy can be explained by noting that other system components aside from clock
speed make a big difference in overall system speed. In particular, memory systems and
advances in I/O processing contribute to the performance ratio. A system is only as fast as
its slowest link. In recent years, the bottlenecks have been the performance of memory
modules and bus speed.

2.8 As noted in the answer to Problem 2.7, even though the Intel machine may have a
faster clock speed (2.4 GHz vs. 1.2 GHz), that does not necessarily mean the system
will perform faster. Different systems are not comparable on clock speed. Other
factors such as the system components (memory, buses, architecture) and the
instruction sets must also be taken into account. A more accurate measure is to run
both systems on a benchmark. Benchmark programs exist for certain tasks, such as
running office applications, performing floating point operations, graphics
operations, and so on. The systems can be compared to each other on how long
they take to complete these tasks. According to Apple Computer, the G4 is
comparable or better than a higher-clock speed Pentium on many benchmarks.

2.9 This representation is wasteful because to represent a single decimal digit from 0
through 9 we need to have ten tubes. If we could have an arbitrary number of these
tubes ON at the same time, then those same tubes could be treated as binary bits.
With ten bits, we can represent 210 patterns, or 1024 patterns. For integers, these
patterns could be used to represent the numbers from 0 through 1023.

-8-

2.10
Ic p m k τ

Instruction set
architecture X X

Compiler technology X X X
Processor
implementation X X

Cache and memory
hierarchy X X

Source: [HWAN93]

2.11 MIPS rate = f/(CPI × 106)

2.12 a. We can express the MIPs rate as: [(MIPS rate)/106] = Ic/T. So that:
Ic = T × [(MIPS rate)/106]. The ratio of the instruction count of the RS/6000 to
the VAX is [x × 18]/[12x × 1] = 1.5.

b. For the Vax, CPI = (5 MHz)/(1 MIPS) = 5.
For the RS/6000, CPI = 25/18 = 1.39.

2.13 CPI = 1.55; MIPS rate = 25.8; Execution time = 3.87 ns. Source: [HWAN93]

2.14 a. Ultimately, the user is concerned with the execution time of a system, not its
execution rate. If we take arithmetic mean of the MIPS rates of various
benchmark programs, we get a result that is proportional to the sum of the
inverses of execution times. But this is not inversely proportional to the sum of
execution times. In other words, the arithmetic mean of the MIPS rate does not
cleanly relate to execution time. On the other hand, the harmonic mean MIPS
rate is the inverse of the average execution time.

b.
Arithmetic mean Harmonic Mean Rank

Computer A 25.3 MIPS 0.25 MIPS 2
Computer B 2.8 MIPS 0.21 MIPS 3
Computer C 3.25 MIPS 2.1 MIPS 1

-9-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

3.1 Processor-memory: Data may be transferred from processor to memory or from
memory to processor. Processor-I/O: Data may be transferred to or from a
peripheral device by transferring between the processor and an I/O module. Data
processing: The processor may perform some arithmetic or logic operation on data.
Control: An instruction may specify that the sequence of execution be altered.

3.2 Instruction address calculation (iac): Determine the address of the next instruction
to be executed. Instruction fetch (if): Read instruction from its memory location
into the processor. Instruction operation decoding (iod): Analyze instruction to
determine type of operation to be performed and operand(s) to be used. Operand
address calculation (oac): If the operation involves reference to an operand in
memory or available via I/O, then determine the address of the operand. Operand
fetch (of): Fetch the operand from memory or read it in from I/O. Data operation
(do): Perform the operation indicated in the instruction. Operand store (os): Write
the result into memory or out to I/O.

3.3 (1) Disable all interrupts while an interrupt is being processed. (2) Define priorities
for interrupts and to allow an interrupt of higher priority to cause a lower-priority
interrupt handler to be interrupted.

3.4 Memory to processor: The processor reads an instruction or a unit of data from
memory. Processor to memory: The processor writes a unit of data to memory. I/O
to processor: The processor reads data from an I/O device via an I/O module.
Processor to I/O: The processor sends data to the I/O device. I/O to or from
memory: For these two cases, an I/O module is allowed to exchange data directly
with memory, without going through the processor, using direct memory access
(DMA).

3.5 With multiple buses, there are fewer devices per bus. This (1) reduces propagation
delay, because each bus can be shorter, and (2) reduces bottleneck effects.

3.6 System pins: Include the clock and reset pins. Address and data pins: Include 32
lines that are time multiplexed for addresses and data. Interface control pins:
Control the timing of transactions and provide coordination among initiators and
targets. Arbitration pins: Unlike the other PCI signal lines, these are not shared
lines. Rather, each PCI master has its own pair of arbitration lines that connect it
directly to the PCI bus arbiter. Error Reporting pins: Used to report parity and
other errors. Interrupt Pins: These are provided for PCI devices that must generate
requests for service. Cache support pins: These pins are needed to support a
memory on PCI that can be cached in the processor or another device. 64-bit Bus
extension pins: Include 32 lines that are time multiplexed for addresses and data

HAPTER 3
COMPUTER FUNCTION AND

INTERCONNECTION

-10-

and that are combined with the mandatory address/data lines to form a 64-bit
address/data bus. JTAG/Boundary Scan Pins: These signal lines support testing
procedures defined in IEEE Standard 1149.1.

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

3.1 Memory (contents in hex): 300: 3005; 301: 5940; 302: 7006
Step 1: 3005 → IR; Step 2: 3 → AC
Step 3: 5940 → IR; Step 4: 3 + 2 = 5 → AC
Step 5: 7006 → IR; Step 6: AC → Device 6

3.2 1. a. The PC contains 300, the address of the first instruction. This value is loaded
in to the MAR.

b. The value in location 300 (which is the instruction with the value 1940 in
hexadecimal) is loaded into the MBR, and the PC is incremented. These two
steps can be done in parallel.

c. The value in the MBR is loaded into the IR.
2. a. The address portion of the IR (940) is loaded into the MAR.

b. The value in location 940 is loaded into the MBR.
c. The value in the MBR is loaded into the AC.

3. a. The value in the PC (301) is loaded in to the MAR.
b. The value in location 301 (which is the instruction with the value 5941) is

loaded into the MBR, and the PC is incremented.
c. The value in the MBR is loaded into the IR.

4. a. The address portion of the IR (941) is loaded into the MAR.
b. The value in location 941 is loaded into the MBR.
c. The old value of the AC and the value of location MBR are added and the

result is stored in the AC.
5. a. The value in the PC (302) is loaded in to the MAR.

b. The value in location 302 (which is the instruction with the value 2941) is
loaded into the MBR, and the PC is incremented.

c. The value in the MBR is loaded into the IR.
6. a. The address portion of the IR (941) is loaded into the MAR.

b. The value in the AC is loaded into the MBR.
c. The value in the MBR is stored in location 941.

3.3 a. 224 = 16 MBytes
b. (1) If the local address bus is 32 bits, the whole address can be transferred at

once and decoded in memory. However, because the data bus is only 16 bits, it
will require 2 cycles to fetch a 32-bit instruction or operand.
(2) The 16 bits of the address placed on the address bus can't access the whole
memory. Thus a more complex memory interface control is needed to latch the
first part of the address and then the second part (because the microprocessor
will end in two steps). For a 32-bit address, one may assume the first half will
decode to access a "row" in memory, while the second half is sent later to access
a "column" in memory. In addition to the two-step address operation, the
microprocessor will need 2 cycles to fetch the 32 bit instruction/operand.

c. The program counter must be at least 24 bits. Typically, a 32-bit microprocessor
will have a 32-bit external address bus and a 32-bit program counter, unless on-
chip segment registers are used that may work with a smaller program counter.
If the instruction register is to contain the whole instruction, it will have to be

-11-

32-bits long; if it will contain only the op code (called the op code register) then
it will have to be 8 bits long.

3.4 In cases (a) and (b), the microprocessor will be able to access 216 = 64K bytes; the
only difference is that with an 8-bit memory each access will transfer a byte, while
with a 16-bit memory an access may transfer a byte or a 16-byte word. For case (c),
separate input and output instructions are needed, whose execution will generate
separate "I/O signals" (different from the "memory signals" generated with the
execution of memory-type instructions); at a minimum, one additional output pin
will be required to carry this new signal. For case (d), it can support 28 = 256 input
and 28 = 256 output byte ports and the same number of input and output 16-bit
ports; in either case, the distinction between an input and an output port is defined
by the different signal that the executed input or output instruction generated.

3.5 Clock cycle =

1
8 MHz

= 125 ns

Bus cycle = 4 × 125 ns = 500 ns
2 bytes transferred every 500 ns; thus transfer rate = 4 MBytes/sec

Doubling the frequency may mean adopting a new chip manufacturing technology
(assuming each instructions will have the same number of clock cycles); doubling
the external data bus means wider (maybe newer) on-chip data bus drivers/latches
and modifications to the bus control logic. In the first case, the speed of the memory
chips will also need to double (roughly) not to slow down the microprocessor; in
the second case, the "wordlength" of the memory will have to double to be able to
send/receive 32-bit quantities.

3.6 a. Input from the Teletype is stored in INPR. The INPR will only accept data from
the Teletype when FGI=0. When data arrives, it is stored in INPR, and FGI is
set to 1. The CPU periodically checks FGI. If FGI =1, the CPU transfers the
contents of INPR to the AC and sets FGI to 0.

When the CPU has data to send to the Teletype, it checks FGO. If FGO = 0,
the CPU must wait. If FGO = 1, the CPU transfers the contents of the AC to
OUTR and sets FGO to 0. The Teletype sets FGI to 1 after the word is printed.

b. The process described in (a) is very wasteful. The CPU, which is much faster
than the Teletype, must repeatedly check FGI and FGO. If interrupts are used,
the Teletype can issue an interrupt to the CPU whenever it is ready to accept or
send data. The IEN register can be set by the CPU (under programmer control)

3.7 a. During a single bus cycle, the 8-bit microprocessor transfers one byte while the
16-bit microprocessor transfers two bytes. The 16-bit microprocessor has twice
the data transfer rate.

b. Suppose we do 100 transfers of operands and instructions, of which 50 are one
byte long and 50 are two bytes long. The 8-bit microprocessor takes 50 + (2 x
50) = 150 bus cycles for the transfer. The 16-bit microprocessor requires 50 + 50
= 100 bus cycles. Thus, the data transfer rates differ by a factor of 1.5. Source:
[PROT88].

3.8 The whole point of the clock is to define event times on the bus; therefore, we wish
for a bus arbitration operation to be made each clock cycle. This requires that the
priority signal propagate the length of the daisy chain (Figure 3.26) in one clock

-12-

period. Thus, the maximum number of masters is determined by dividing the
amount of time it takes a bus master to pass through the bus priority by the clock
period.

3.9 The lowest-priority device is assigned priority 16. This device must defer to all the
others. However, it may transmit in any slot not reserved by the other SBI devices.

3.10 At the beginning of any slot, if none of the TR lines is asserted, only the priority 16
device may transmit. This gives it the lowest average wait time under most
circumstances. Only when there is heavy demand on the bus, which means that
most of the time there is at least one pending request, will the priority 16 device
not have the lowest average wait time.

3.11 a. With a clocking frequency of 10 MHz, the clock period is 10–9 s = 100 ns. The
length of the memory read cycle is 300 ns.

b. The Read signal begins to fall at 75 ns from the beginning of the third clock
cycle (middle of the second half of T3). Thus, memory must place the data on
the bus no later than 55 ns from the beginning of T3. Source: [PROT88]

3.12 a. The clock period is 125 ns. Therefore, two clock cycles need to be inserted.
b. From Figure 3.19, the Read signal begins to rise early in T2. To insert two clock

cycles, the Ready line can be put in low at the beginning of T2 and kept low for
250 ns. Source: [PROT88]

3.13 a. A 5 MHz clock corresponds to a clock period of 200 ns. Therefore, the Write
signal has a duration of 150 ns.

b. The data remain valid for 150 + 20 = 170 ns.
c. One wait state. Source: [PROT88]

3.14 a. Without the wait states, the instruction takes 16 bus clock cycles. The
instruction requires four memory accesses, resulting in 8 wait states. The
instruction, with wait states, takes 24 clock cycles, for an increase of 50%.

b. In this case, the instruction takes 26 bus cycles without wait states and 34 bus
cycles with wait states, for an increase of 33%. Source: [PROT88]

3.15 a. The clock period is 125 ns. One bus read cycle takes 500 ns = 0.5 µs. If the bus
cycles repeat one after another, we can achieve a data transfer rate of 2 MB/s.

b. The wait state extends the bus read cycle by 125 ns, for a total duration of 0.625
µs. The corresponding data transfer rate is 1/0.625 = 1.6 MB/s. Source:
[PROT88]

3.16 A bus cycle takes 0.25 µs, so a memory cycle takes 1 µs. If both operands are even-
aligned, it takes 2 µs to fetch the two operands. If one is odd-aligned, the time
required is 3 µs. If both are odd-aligned, the time required is 4 µs. Source:
[PROT88].

3.17 Consider a mix of 100 instructions and operands. On average, they consist of 20 32-
bit items, 40 16-bit items, and 40 bytes. The number of bus cycles required for the
16-bit microprocessor is (2 × 20) + 40 + 40 = 120. For the 32-bit microprocessor, the
number required is 100. This amounts to an improvement of 20/120 or about 17%.
Source: [PROT88].

-13-

3.18 The processor needs another nine clock cycles to complete the instruction. Thus,
the Interrupt Acknowledge will start after 900 ns. Source: [PROT88].

3.19

Address

Bus Cmd

Address PhaseAddress PhaseAddress Phase Address Phase

Byte Enable Byte Enable Byte Enable

Data-1 Data-2 Data-3

CLK

1 2 3 4 5 6 7 8 9

FRAME#

AD

C/BE#

IRDY#

TRDY#

DEVSEL#

Wait State Wait State Wait State

Bus Transaction

-14-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

4.1 Sequential access: Memory is organized into units of data, called records. Access
must be made in a specific linear sequence. Direct access: Individual blocks or
records have a unique address based on physical location. Access is accomplished
by direct access to reach a general vicinity plus sequential searching, counting, or
waiting to reach the final location. Random access: Each addressable location in
memory has a unique, physically wired-in addressing mechanism. The time to
access a given location is independent of the sequence of prior accesses and is
constant.

4.2 Faster access time, greater cost per bit; greater capacity, smaller cost per bit; greater
capacity, slower access time.

4.3 It is possible to organize data across a memory hierarchy such that the percentage
of accesses to each successively lower level is substantially less than that of the level
above. Because memory references tend to cluster, the data in the higher-level
memory need not change very often to satisfy memory access requests.

4.4 In a cache system, direct mapping maps each block of main memory into only one
possible cache line. Associative mapping permits each main memory block to be
loaded into any line of the cache. In set-associative mapping, the cache is divided
into a number of sets of cache lines; each main memory block can be mapped into
any line in a particular set.

4.5 One field identifies a unique word or byte within a block of main memory. The
remaining two fields specify one of the blocks of main memory. These two fields
are a line field, which identifies one of the lines of the cache, and a tag field, which
identifies one of the blocks that can fit into that line.

4.6 A tag field uniquely identifies a block of main memory. A word field identifies a
unique word or byte within a block of main memory.

4.7 One field identifies a unique word or byte within a block of main memory. The
remaining two fields specify one of the blocks of main memory. These two fields
are a set field, which identifies one of the sets of the cache, and a tag field, which
identifies one of the blocks that can fit into that set.

4.8 Spatial locality refers to the tendency of execution to involve a number of memory
locations that are clustered. Temporal locality refers to the tendency for a processor
to access memory locations that have been used recently.

4.9 Spatial locality is generally exploited by using larger cache blocks and by
incorporating prefetching mechanisms (fetching items of anticipated use) into the

CHAPTER 4
CACHE MEMORY

-15-

cache control logic. Temporal locality is exploited by keeping recently used
instruction and data values in cache memory and by exploiting a cache hierarchy.

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

4.1 The cache is divided into 16 sets of 4 lines each. Therefore, 4 bits are needed to
identify the set number. Main memory consists of 4K = 212 blocks. Therefore, the set
plus tag lengths must be 12 bits and therefore the tag length is 8 bits. Each block
contains 128 words. Therefore, 7 bits are needed to specify the word.

TAG SET WORD
Main memory address = 8 4 7

4.2 There are a total of 8 kbytes/16 bytes = 512 lines in the cache. Thus the cache
consists of 256 sets of 2 lines each. Therefore 8 bits are needed to identify the set
number. For the 64-Mbyte main memory, a 26-bit address is needed. Main memory
consists of 64-Mbyte/16 bytes = 222 blocks. Therefore, the set plus tag lengths must
be 22 bits, so the tag length is 14 bits and the word field length is 4 bits.

TAG SET WORD
Main memory address = 14 8 4

4.3
Address 111111 666666 BBBBBB

a. Tag/Line/Word 11/444/1 66/1999/2 BB/2EEE/3
b. Tag /Word 44444/1 199999/2 2EEEEE/3
c. Tag/Set/Word 22/444/1 CC/1999/2 177/EEE/3

4.4 a. Address length: 24; number of addressable units: 224; block size: 4; number of
blocks in main memory: 222; number of lines in cache: 214; size of tag: 8.

b. Address length: 24; number of addressable units: 224; block size: 4; number of
blocks in main memory: 222; number of lines in cache: 4000 hex; size of tag: 22.

c. Address length: 24; number of addressable units: 224; block size: 4; number of
blocks in main memory: 222; number of lines in set: 2; number of sets: 213;
number of lines in cache: 214; size of tag: 9.

4.5 Block frame size = 16 bytes = 4 doublewords
Number of block frames in cache =

16 KBytes
16 Bytes

= 1024

Number of sets =

Number of block frames

Associativity
=

1024
4

= 256 sets

-16-

.

OffsetSetTag
20 bits 8 4

D
ec

od
er

Comp1

Comp2

Comp3

Comp4

8 20
Set 0

Set 1

Set 255

•
•
•

•
•
•

Set
0

Set
1

Set
255

Tag (20) 4 DWs

Hit

4

Example: doubleword from location ABCDE8F8 is mapped onto: set 143, any
line, doubleword 2:

(1000)A B C D E (1111) (1000)
8 F 8

Set = 143

-17-

4.6

12 bits 10 bits

4.7 A 32-bit address consists of a 21-bit tag field, a 7-bit set field, and a 4-bit word field.
Each set in the cache includes 3 LRU bits and four lines. Each line consists of 4 32-
bit words, a valid bit, and a 21-bit tag.

4.8 a. 8 leftmost bits = tag; 5 middle bits = line number; 3 rightmost bits = byte
number

b. slot 3; slot 6; slot 3; slot 21
c. Bytes with addresses 0001 1010 0001 1000 through 0001 1010 0001 1111 are

stored in the cache
d. 256 bytes
e. Because two items with two different memory addresses can be stored in the

same place in the cache. The tag is used to distinguish between them.

-18-

4.9 a. The bits are set according to the following rules with each access to the set:

1. If the access is to L0 or L1, B0 ← 1.
2. If the access is to L0, B1 ← 1.
3. If the access is to L1, B1 ← 0.
4. If the access is to L2 or L3, B0 ← 0.
5. If the access is to L2, B2 ← 1.
6. If the access is to L3, B2 ← 0.

The replacement algorithm works as follows (Figure 4.15): When a line must be
replaced, the cache will first determine whether the most recent use was from
L0 and L1 or L2 and L3. Then the cache will determine which of the pair of
blocks was least recently used and mark it for replacement. When the cache is
initialized or flushed all 128 sets of three LRU bits are set to zero.

b. The 80486 divides the four lines in a set into two pairs (L0, L1 and L2, L3). Bit
B0 is used to select the pair that has been least-recently used. Within each pair,
one bit is used to determine which member of the pair was least-recently used.
However, the ultimate selection only approximates LRU. Consider the case in
which the order of use was: L0, L2, L3, L1. The least-recently used pair is (L2,
L3) and the least-recently used member of that pair is L2, which is selected for
replacement. However, the least-recently used line of all is L0. Depending on
the access history, the algorithm will always pick the least-recently used entry
or the second least-recently used entry.

c. The most straightforward way to implement true LRU for a four-line set is to
associate a two bit counter with each line. When an access occurs, the counter
for that block is set to 0; all counters with values lower than the original value
for the accessed block are incremented by 1. When a miss occurs and the set is
not full, a new block is brought in, its counter is set to 0 and all other counters
are incremented by 1. When a miss occurs and the set is full, the block with
counter value 3 is replaced; its counter is set to 0 and all other counters are
incremented by 1. This approach requires a total of 8 bits.

In general, for a set of N blocks, the above approach requires 2N bits. A
more efficient scheme can be designed which requires only N(N–1)/2 bits. The
scheme operates as follows. Consider a matrix R with N rows and N columns,
and take the upper-right triangular portion of the matrix, not counting the
diagonal. For N = 4, we have the following layout:

R(1,2) R(1,3) R(1,4)
R(2,3) R(2,4)

R(3,4)

When line I is referenced, row I of R(I,J) is set to 1, and column I of R(J,I) is set
to 0. The LRU block is the one for which the row is entirely equal to 0 (for those
bits in the row; the row may be empty) and for which the column is entirely 1
(for all the bits in the column; the column may be empty). As can be seen for N
= 4, a total of 6 bits are required.

-19-

4.10 Block size = 4 words = 2 doublewords; associativity K = 2; cache size = 4048
words; C = 1024 block frames; number of sets S = C/K = 512; main memory = 64K
× 32 bits = 256 Kbytes = 218 bytes; address = 18 bits..

Tag Set

Word bits

(6 bits) (9) (2) (1)

Compare
0

Compare
1

D
ec

od
er

Set 0

Set 511

•
•
•

Tag (6) 4 words
Set 0
(8 words)

Set 511
(8 words)

•
•
•

word select

4.11 a. Address format: Tag = 20 bits; Line = 6 bits; Word = 6 bits
Number of addressable units = 2s+w = 232 bytes; number of blocks in main
memory = 2s = 226; number of lines in cache 2r = 26 = 64; size of tag = 20 bits.

b. Address format: Tag = 26 bits; Word = 6 bits
Number of addressable units = 2s+w = 232 bytes; number of blocks in main
memory = 2s = 226; number of lines in cache = undetermined; size of tag = 26
bits.

c. Address format: Tag = 9 bits; Set = 17 bits; Word = 6 bits
Number of addressable units = 2s+w = 232 bytes; Number of blocks in main
memory = 2s = 226; Number of lines in set = k = 4; Number of sets in cache = 2d

= 217; Number of lines in cache = k × 2d =219; Size of tag = 9 bits.

4.12 a. Because the block size is 16 bytes and the word size is 1 byte, this means there
are 16 words per block. We will need 4 bits to indicate which word we want
out of a block. Each cache line/slot matches a memory block. That means each
cache slot contains 16 bytes. If the cache is 64Kbytes then 64Kbytes/16 = 4096
cache slots. To address these 4096 cache slots, we need 12 bits (212 = 4096).
Consequently, given a 20 bit (1 MByte) main memory address:

Bits 0-3 indicate the word offset (4 bits)
Bits 4-15 indicate the cache slot (12 bits)
Bits 16-19 indicate the tag (remaining bits)

F0010 = 1111 0000 0000 0001 0000
Word offset = 0000 = 0
Slot = 0000 0000 0001 = 001
Tag = 1111 = F

01234 = 0000 0001 0010 0011 0100
Word offset = 0100 = 4
Slot = 0001 0010 0011 = 123
Tag = 0000 = 0

-20-

CABBE = 1100 1010 1011 1011 1110
Word offset = 1110 = E
Slot = 1010 1011 1011 = ABB
Tag = 1100 = C

b. We need to pick any address where the slot is the same, but the tag (and
optionally, the word offset) is different. Here are two examples where the slot
is 1111 1111 1111
Address 1:

Word offset = 1111
Slot = 1111 1111 1111
Tag = 0000
Address = 0FFFF

Address 2:
Word offset = 0001
Slot = 1111 1111 1111
Tag = 0011
Address = 3FFF1

c. With a fully associative cache, the cache is split up into a TAG and a
WORDOFFSET field. We no longer need to identify which slot a memory block
might map to, because a block can be in any slot and we will search each cache
slot in parallel. The word-offset must be 4 bits to address each individual word
in the 16-word block. This leaves 16 bits leftover for the tag.
F0010

Word offset = 0h
Tag = F001h

CABBE
Word offset = Eh
Tag = CABBh

d. As computed in part a, we have 4096 cache slots. If we implement a two -way
set associative cache, then it means that we put two cache slots into one set.
Our cache now holds 4096/2 = 2048 sets, where each set has two slots. To
address these 2048 sets we need 11 bits (211 = 2048). Once we address a set, we
will simultaneously search both cache slots to see if one has a tag that matches
the target. Our 20-bit address is now broken up as follows:

Bits 0-3 indicate the word offset
Bits 4-14 indicate the cache set
Bits 15-20 indicate the tag

F0010 = 1111 0000 0000 0001 0000
Word offset = 0000 = 0
Cache Set = 000 0000 0001 = 001
Tag = 11110 = 1 1110 = 1E

CABBE = 1100 1010 1011 1011 1110
Word offset = 1110 = E
Cache Set = 010 1011 1011 = 2BB
Tag = 11001 = 1 1001 = 19

4.13 Associate a 2-bit counter with each of the four blocks in a set. Initially, arbitrarily
set the four values to 0, 1, 2, and 3 respectively. When a hit occurs, the counter of
the block that is referenced is set to 0. The other counters in the set with values
originally lower than the referenced counter are incremented by 1; the remaining
counters are unchanged. When a miss occurs, the block in the set whose counter

-21-

value is 3 is replaced and its counter set to 0. All other counters in the set are
incremented by 1.

4.14 Writing back a line takes 30 + (7 × 5) = 65 ns, enough time for 2.17 single-word
memory operations. If the average line that is written at least once is written more
than 2.17 times, the write-back cache will be more efficient.

4.15 a. A reference to the first instruction is immediately followed by a reference to the
second.

b. The ten accesses to a[i] within the inner for loop which occur within a short
interval of time.

4.16 Define
Ci = Average cost per bit, memory level i
Si = Size of memory level i
Ti = Time to access a word in memory level i
Hi = Probability that a word is in memory i and in no higher-level memory
Bi = Time to transfer a block of data from memory level (i + 1) to memory level i

Let cache be memory level 1; main memory, memory level 2; and so on, for a total
of N levels of memory. Then

Cs =

CiSi
i=1

N
∑

Si
i=1

N
∑

The derivation of Ts is more complicated. We begin with the result from
probability theory that:

Expected Value of x = i Pr x = 1[]

i=1

N
∑

We can write:

Ts = TiHi

i=1

N
∑

We need to realize that if a word is in M1 (cache), it is read immediately. If it is in
M2 but not M1, then a block of data is transferred from M2 to M1 and then read.
Thus:

T2 = B1 + T1

Further

T3 = B2 + T2 = B1 + B2 + T1

-22-

Generalizing:

Ti = Bj + T1

j=1

i−1
∑

So

Ts = BjHi()

j=1

i−1
∑

i=2

N
∑ + T1 Hi

i=1

N
∑

But

Hi
i=1

N
∑ = 1

Finally

Ts = BjHi()

j=1

i−1
∑

i=2

N
∑ + T1

4.17 Main memory consists of 512 blocks of 64 words. Cache consists of 16 sets; each set
consists of 4 slots; each slot consists of 64 words. Locations 0 through 4351 in main
memory occupy blocks 0 through 67. On the first fetch sequence, block 0 through
15 are read into sets 0 through 15; blocks 16 through 31 are read into sets 0 through
15; blocks 32-47 are read into sets 0 through 15; blocks 48-63 are read into sets 0
through 15; and blocks 64-67 are read into sets 0 through 3. Because each set has 4
slots, there is no replacement needed through block 63. The last 4 groups of blocks
involve a replacement. On each successive pass, replacements will be required in
sets 0 through 3, but all of the blocks in sets 4 through 15 remain undisturbed.
Thus, on each successive pass, 48 blocks are undisturbed, and the remaining 20
must read in.

Let T be the time to read 64 words from cache. Then 10T is the time to read 64
words from main memory. If a word is not in the cache, then it can only be ready
by first transferring the word from main memory to the cache and then reading the
cache. Thus the time to read a 64-word block from cache if it is missing is 11T.

We can now express the improvement factor as follows. With no cache

Fetch time = (10 passes) (68 blocks/pass) (10T/block) = 6800T

With cache

Fetch time = (68) (11T) first pass
+ (9) (48) (T) + (9) (20) (11T) other passes

= 3160T

Improvement = 6800T
3160T = 2.15

4.18 a. Access 63 1 Miss Block 3 → Slot 3
Access 64 1 Miss Block 4 → Slot 0
Access 65-70 6 Hits

-23-

Access 15 1 Miss Block 0 → Slot 0 First Loop
Access 16 1 Miss Block 1 → Slot 1
Access 17-31 15 Hits
Access 32 1 Miss Block 2 → Slot 2
Access 80 1 Miss Block 5 → Slot 1
Access 81-95 15 Hits
Access 15 1 Hit Second Loop
Access 16 1 Miss Block 1 → Slot 1
Access 17-31 15 hits
Access 32 1 Hit
Access 80 1 Miss Block 5 → Slot 1
Access 81-95 15 hits
Access 15 1 Hit Third Loop
Access 16 1 Miss Block 1 → Slot 1
Access 17-31 15 hits
Access 32 1 Hit
Access 80 1 Miss Block 5 → Slot 1
Access 81-95 15 hits
Access 15 1 Hit Fourth Loop
… Pattern continues to the Tenth Loop

For lines 63-70 2 Misses 6 Hits
First loop 15-32, 80-95 4 Misses 30 Hits
Second loop 15-32, 80-95 2 Misses 32 Hits
Third loop 15-32, 80-95 2 Misses 32 Hits
Fourth loop 15-32, 80-95 2 Misses 32 Hits
Fifth loop 15-32, 80-95 2 Misses 32 Hits
Sixth loop 15-32, 80-95 2 Misses 32 Hits
Seventh loop 15-32, 80-95 2 Misses 32 Hits
Eighth loop 15-32, 80-95 2 Misses 32 Hits
Ninth loop 15-32, 80-95 2 Misses 32 Hits
Tenth loop 15-32, 80-95 2 Misses 32 Hits
Total: 24 Misses 324 Hits
Hit Ratio = 324/348 = 0.931

b. Access 63 1 Miss Block 3 → Set 1 Slot 2
Access 64 1 Miss Block 4 → Set 0 Slot 0
Access 65-70 6 Hits
Access 15 1 Miss Block 0 → Set 0 Slot 1 First Loop
Access 16 1 Miss Block 1 → Set 1 Slot 3
Access 17-31 15 Hits
Access 32 1 Miss Block 2 → Set 0 Slot 0
Access 80 1 Miss Block 5 → Set 1 Slot 2
Access 81-95 15 Hits
Access 15 1 Hit Second Loop
Access 16-31 16 Hits
Access 32 1 Hit
Access 80-95 16 Hits
… All hits for the next eight iterations

For lines 63-70 2 Misses 6 Hits
First loop 15-32, 80-95 4 Misses 30 Hits

-24-

Second loop 15-32, 80-95 0 Misses 34 Hits
Third loop 15-32, 80-95 0 Misses 34 Hits
Fourth loop 15-32, 80-95 0 Misses 34 Hits
Fifth loop 15-32, 80-95 0 Misses 34 Hits
Sixth loop 15-32, 80-95 0 Misses 34 Hits
Seventh loop 15-32, 80-95 0 Misses 34 Hits
Eighth loop 15-32, 80-95 0 Misses 34 Hits
Ninth loop 15-32, 80-95 0 Misses 34 Hits
Tenth loop 15-32, 80-95 0 Misses 34 Hits
Total = 6 Misses 342 Hits
Hit Ratio = 342/348 = 0.983

4.19 a. Cost = Cm × 8 × 106 = 8 × 103 ¢ = $80
b. Cost = Cc × 8 × 106 = 8 × 104 ¢ = $800
c. From Equation (4.1) : 1.1 × T1 = T1 + (1 – H)T2

(0.1)(100) = (1 – H)(1200)
H = 1190/1200

4.20 a. Under the initial conditions, using Equation (4.1), the average access time is

T1 + (1 - H) T2 = 1 + (0.05) T2

Under the changed conditions, the average access time is

1.5 + (0.03) T2

For improved performance, we must have

1 + (0.05) T2 > 1.5 + (0.03) T2

Solving for T2, the condition is T2 > 50
b. As the time for access when there is a cache miss become larger, it becomes

more important to increase the hit ratio.

4.21 a. First, 2.5 ns are needed to determine that a cache miss occurs. Then, the
required line is read into the cache. Then an additional 2.5 ns are needed to
read the requested word.

Tmiss = 2.5 + 50 + (15)(5) + 2.5 = 130 ns
b. The value Tmiss from part (a) is equivalent to the quantity (T1 + T2) in Equation

(4.1). Under the initial conditions, using Equation (4.1), the average access time
is

Ts = H × T1 + (1 – H) × (T1 + T2) = (0.95)(2.5) + (0.05)(130) = 8.875 ns

Under the revised scheme, we have:
Tmiss = 2.5 + 50 + (31)(5) + 2.5 = 210 ns

and

Ts = H × T1 + (1 – H) × (T1 + T2) = (0.97)(2.5) + (0.03)(210) = 8.725 ns

-25-

4.22 There are three cases to consider:

Location of referenced word Probability Total time for access in ns
In cache 0.9 20
Not in cache, but in main
memory

(0.1)(0.6) = 0.06 60 + 20 = 80

Not in cache or main memory (0.1)(0.4) = 0.04 12ms + 60 + 20 = 12,000,080

So the average access time would be:

Avg = (0.9)(20) + (0.06)(80) + (0.04)(12000080) = 480026 ns

4.23 a. Consider the execution of 100 instructions. Under write-through, this creates
200 cache references (168 read references and 32 write references). On average,
the read references result in (0.03) × 168 = 5.04 read misses. For each read miss,
a line of memory must be read in, generating 5.04 × 8 = 40.32 physical words of
traffic. For write misses, a single word is written back, generating 32 words of
traffic. Total traffic: 72.32 words. For write back, 100 instructions create 200
cache references and thus 6 cache misses. Assuming 30% of lines are dirty, on
average 1.8 of these misses require a line write before a line read. Thus, total
traffic is (6 + 1.8) × 8 = 62.4 words. The traffic rate:
Write through = 0.7232 byte/instruction
Write back = 0.624 bytes/instruction

b. For write-through: [(0.05) × 168 × 8] + 32 = 99.2 → 0.992 bytes/instruction
For write-back: (10 + 3) × 8 = 104 → 0.104 bytes/instruction

c. For write-through: [(0.07) × 168 × 8] + 32 = 126.08 → 0.12608 bytes/instruction
For write-back: (14 + 4.2) × 8 = 145.6 → 0.1456 bytes/instruction

d. A 5% miss rate is roughly a crossover point. At that rate, the memory traffic is
about equal for the two strategies. For a lower miss rate, write-back is superior.
For a higher miss rate, write-through is superior.

4.24 a. One clock cycle equals 60 ns, so a cache access takes 120 ns and a main memory
access takes 180 ns. The effective length of a memory cycle is (0.9 × 120) + (0.1 ×
180) = 126 ns.

b. The calculation is now (0.9 × 120) + (0.1 × 300) = 138 ns. Clearly the
performance degrades. However, note that although the memory access time
increases by 120 ns, the average access time increases by only 12 ns. Source:
[PROT88].

4.25 a. For a 1 MIPS processor, the average instruction takes 1000 ns to fetch and
execute. On average, an instruction uses two bus cycles for a total of 600 ns, so
the bus utilization is 0.6

b. For only half of the instructions must the bus be used for instruction fetch. Bus
utilization is now (150 + 300)/1000 = 0.45. This reduces the waiting time for
other bus requestors, such as DMA devices and other microprocessors.

4.26 a. Ta = Tc + (1 – H)Tb + W(Tm – Tc)
b. Ta = Tc + (1 – H)Tb + Wb(1 – H)Tb = Tc + (1 – H)(1 + Wb)Tb

-26-

4.27 Ta = [Tc1 + (1 – H1)Tc2] + (1 – H2)Tm

4.28 a. miss penalty = 1 + 4 = 5 clock cycles
b. miss penalty = 4 × (1 + 4) = 20 clock cycles
c. miss penalty = miss penalty for one word + 3 = 8 clock cycles.

4.29 The average miss penalty equals the miss penalty times the miss rate. For a line
size of one word, average miss penalty = 0.032 x 5 = 0.16 clock cycles. For a line
size of 4 words and the nonburst transfer, average miss penalty = 0.011 x 20 = 0.22
clock cycles. For a line size of 4 words and the burst transfer, average miss penalty
= 0.011 x 8 = 0.132 clock cycles.

-27-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

5.1 They exhibit two stable (or semistable) states, which can be used to represent binary
1 and 0; they are capable of being written into (at least once), to set the state; they
are capable of being read to sense the state.

5.2 (1) A memory in which individual words of memory are directly accessed through
wired-in addressing logic. (2) Semiconductor main memory in which it is possible
both to read data from the memory and to write new data into the memory easily
and rapidly.

5.3 SRAM is used for cache memory (both on and off chip), and DRAM is used for
main memory.

5.4 SRAMs generally have faster access times than DRAMs. DRAMS are less expensive
and smaller than SRAMs.

5.5 A DRAM cell is essentially an analog device using a capacitor; the capacitor can
store any charge value within a range; a threshold value determines whether the
charge is interpreted as 1 or 0. A SRAM cell is a digital device, in which binary
values are stored using traditional flip-flop logic-gate configurations.

5.6 Microprogrammed control unit memory; library subroutines for frequently wanted
functions; system programs; function tables.

5.7 EPROM is read and written electrically; before a write operation, all the storage
cells must be erased to the same initial state by exposure of the packaged chip to
ultraviolet radiation. Erasure is performed by shining an intense ultraviolet light
through a window that is designed into the memory chip. EEPROM is a read-
mostly memory that can be written into at any time without erasing prior contents;
only the byte or bytes addressed are updated. Flash memory is intermediate
between EPROM and EEPROM in both cost and functionality. Like EEPROM, flash
memory uses an electrical erasing technology. An entire flash memory can be
erased in one or a few seconds, which is much faster than EPROM. In addition, it is
possible to erase just blocks of memory rather than an entire chip. However, flash
memory does not provide byte-level erasure. Like EPROM, flash memory uses only
one transistor per bit, and so achieves the high density (compared with EEPROM)
of EPROM.

5.8 A0 - A1 = address lines:. CAS = column address select:. D1 - D4 = data lines. NC: =
no connect. OE: output enable. RAS = row address select:. Vcc: = voltage source.
Vss: = ground. WE: write enable.

5.9 A bit appended to an array of binary digits to make the sum of all the binary digits,
including the parity bit, always odd (odd parity) or always even (even parity).

CHAPTER 5
INTERNAL MEMORY

-28-

5.10 A syndrome is created by the XOR of the code in a word with a calculated version
of that code. Each bit of the syndrome is 0 or 1 according to if there is or is not a
match in that bit position for the two inputs. If the syndrome contains all 0s, no
error has been detected. If the syndrome contains one and only one bit set to 1,
then an error has occurred in one of the 4 check bits. No correction is needed. If the
syndrome contains more than one bit set to 1, then the numerical value of the
syndrome indicates the position of the data bit in error. This data bit is inverted for
correction.

5.11 Unlike the traditional DRAM, which is asynchronous, the SDRAM exchanges data
with the processor synchronized to an external clock signal and running at the full
speed of the processor/memory bus without imposing wait states.

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

5.1 The 1-bit-per-chip organization has several advantages. It requires fewer pins on
the package (only one data out line); therefore, a higher density of bits can be
achieved for a given size package. Also, it is somewhat more reliable because it has
only one output driver. These benefits have led to the traditional use of 1-bit-per-
chip for RAM. In most cases, ROMs are much smaller than RAMs and it is often
possible to get an entire ROM on one or two chips if a multiple-bits-per-chip
organization is used. This saves on cost and is sufficient reason to adopt that
organization.

5.2 In 1 ms, the time devoted to refresh is 64 × 150 ns = 9600 ns. The fraction of time
devoted to memory refresh is (9.6 × 10–6 s)/10–3 s = 0.0096, which is approximately
1%.

5.3 a. Memory cycle time = 60 + 40 = 100 ns. The maximum data rate is 1 bit every 100
ns, which is 10 Mbps.

b. 320 Mbps = 40 MB/s.

-29-

5.4

S0 S1

S2
S3

S4
S5

S6
S7

A0

A19

A20
A21
A22

Decoder

Chip select

1 Mb

Chip select

1 Mb

Chip select

1 Mb

Chip select

1 Mb

Chip select

1 Mb

Chip select

1 Mb

Chip select

1 Mb

Chip select

1 Mb
•
•
•

5.5 a. The length of a clock cycle is 100 ns. Mark the beginning of T1 as time 0.Address
Enable returns to a low at 75.

€

RAS goes active 50 ns later, or time 125. Data
must become available by the DRAMs at time 300 – 60 = 240. Hence, access time
must be no more than 240 – 125 = 115 ns.

b. A single wait state will increase the access time requirement to 115 + 100 = 215
ns. This can easily be met by DRAMs with access times of 150 ns. Source:
[PROT88].

5.6 a. The refresh period from row to row must be no greater than
4000/256 = 15.625 µs.

b. An 8-bit counter is needed to count 256 rows (28 = 256). Source: [PROT88].

5.7 a.
pulse a = write
pulse b = write
pulse c = write
pulse d = write
pulse e= write

pulse f = write
pulse g = store-disable outputs
pulse h = read
pulse i = read
pulse j = read

pulse k = read
pulse l = read
pulse m = read
pulse n = store-disable outputs

-30-

b. Data is read in via pins (D3, D2, D1, D0)
word 0 = 1111 (written into location 0 during pulse a)
word 1 = 1110 (written into location 0 during pulse b)
word 2 = 1101 (written into location 0 during pulse c)
word 3 = 1100 (written into location 0 during pulse d)
word 4 = 1011 (written into location 0 during pulse e)
word 5 = 1010 (written into location 0 during pulse f)
word 6 = random (did not write into this location 0)

c. Output leads are (O3, O2, O1, O0)
pulse h: 1111 (read location 0)
pulse i: 1110 (read location 1)
pulse j: 1101 (read location 2)
pulse k: 1100 (read location 3)
pulse l: 1011 (read location 4)
pulse m: 1010 (read location 5)

5.8 8192/64 = 128 chips; arranged in 8 rows by 64 columns:

.

• • •

• • •

•
•
•

•
•
•

•
•
•

0 1 7

112 113 119

Section 0 (even)
• • •

• • •

•
•
•

•
•
•

•
•
•

8 9 15

120 121 127

Section 1 (odd)

A0 = L A0 = H

D
ec

od
er

Row 0
Row 1

Row 7

•
•
•

8
RowsAll zeros

Ak-A10 A9-A7

3
A6-A1

6

AB

En

8

8
Depends on

type of
processor

5.9 Total memory is 1 megabyte = 8 megabits. It will take 32 DRAMs to construct the
memory (32 × 256 Kb = 8 Mb). The composite failure rate is 2000 × 32 = 64,000 FITS.
From this, we get a MTBF = 109/64,000 = 15625 hours = 22 months. Source:
[PROT88].

5.10 The stored word is 001101001111, as shown in Figure 5.10. Now suppose that the
only error is in C8, so that the fetched word is 001111001111. Then the received
block results in the following table:

Position 12 11 10 9 8 7 6 5 4 3 2 1
Bits D8 D7 D6 D5 C8 D4 D3 D2 C4 D1 C2 C1
Block 0 0 1 1 1 1 0 0 1 1 1 1
Codes 1010 1001 0111 0011

-31-

The check bit calculation after reception:

Position Code
Hamming 1111

10 1010
9 1001
7 0111
3 0011

XOR = syndrome 1000

The nonzero result detects and error and indicates that the error is in bit position 8,
which is check bit C8.

5.11 Data bits with value 1 are in bit positions 12, 11, 5, 4, 2, and 1:

Position 12 11 10 9 8 7 6 5 4 3 2 1
Bits D8 D7 D6 D5 C8 D4 D3 D2 C4 D1 C2 C1
Block 1 1 0 0 0 0 1 0
Codes 1100 1011 0101

The check bits are in bit numbers 8, 4, 2, and 1.
Check bit 8 calculated by values in bit numbers: 12, 11, 10 and 9
Check bit 4 calculated by values in bit numbers: 12, 7, 6, and 5
Check bit 2 calculated by values in bit numbers: 11, 10, 7, 6 and 3
Check bit 1 calculated by values in bit numbers: 11, 9, 7, 5 and 3
Thus, the check bits are: 0 0 1 0

5.12 The Hamming Word initially calculated was:

bit number: 12 11 10 9 8 7 6 5 4 3 2 1
0 0 1 1 0 1 0 0 1 1 1 1

Doing an exclusive-OR of 0111 and 1101 yields 1010 indicating an error in bit 10 of
the Hamming Word. Thus, the data word read from memory was 00011001.

5.13 Need K check bits such that 1024 + K ≤ 2K – 1.
The minimum value of K that satisfies this condition is 11.

-32-

5.14 As Table 5.2 indicates, 5 check bits are needed for an SEC code for 16-bit data
words. The layout of data bits and check bits:

Bit Position Position Number Check Bits Data Bits
21 10101 M16
20 10100 M15
19 10011 M14
18 10010 M13
17 10001 M12
16 10000 C16
15 01111 M11
14 01110 M10
13 01101 M9
12 01100 M8
11 01011 M7
10 01010 M6
 9 01001 M5
 8 01000 C8
 7 00111 M4
 6 00110 M3
 5 00101 M2
 4 00100 C4
 3 00011 M1
 2 00010 C2
 1 00001 C1

The equations are calculated as before, for example,
C1= M1 ⊕ M2 ⊕ M4 ⊕ M5 ⊕ M7 ⊕ M9 ⊕ M11 ⊕ M12 ⊕ M14 ⊕ M16.

For the word 0101000000111001, the code is
C16 = 1; C8 = 1; C 4 = 1; C2 = 1; C1 = 0.

If an error occurs in data bit 4:
C16 = 1 ; C8 =1; C4 = 0; C2 = 0; C1 = 1.

Comparing the two:

C16 C8 C4 C2 C1
1 1 1 1 0
1 1 0 0 1
0 0 1 1 1

The result is an error identified in bit position 7, which is data bit 4.

-33-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

6.1 Improvement in the uniformity of the magnetic film surface to increase disk
reliability. A significant reduction in overall surface defects to help reduce
read/write errors. Ability to support lower fly heights (described subsequently).
Better stiffness to reduce disk dynamics. Greater ability to withstand shock and
damage

6.2 The write mechanism is based on the fact that electricity flowing through a coil
produces a magnetic field. Pulses are sent to the write head, and magnetic patterns
are recorded on the surface below, with different patterns for positive and negative
currents. An electric current in the wire induces a magnetic field across the gap,
which in turn magnetizes a small area of the recording medium. Reversing the
direction of the current reverses the direction of the magnetization on the recording
medium.

6.3 The read head consists of a partially shielded magnetoresistive (MR) sensor. The
MR material has an electrical resistance that depends on the direction of the
magnetization of the medium moving under it. By passing a current through the
MR sensor, resistance changes are detected as voltage signals.

6.4 For the constant angular velocity (CAV) system, the number of bits per track is
constant. An increase in density is achieved with multiple zoned recording, in
which the surface is divided into a number of zones, with zones farther from the
center containing more bits than zones closer to the center.

6.5 On a magnetic disk. data is organized on the platter in a concentric set of rings,
called tracks. Data are transferred to and from the disk in sectors. For a disk with
multiple platters, the set of all the tracks in the same relative position on the platter
is referred to as a cylinder.

6.6 512 bytes.

6.7 On a movable-head system, the time it takes to position the head at the track is
known as seek time. Once the track is selected, the disk controller waits until the
appropriate sector rotates to line up with the head. The time it takes for the
beginning of the sector to reach the head is known as rotational delay. The sum of
the seek time, if any, and the rotational delay equals the access time, which is the
time it takes to get into position to read or write. Once the head is in position, the
read or write operation is then performed as the sector moves under the head; this
is the data transfer portion of the operation and the time for the transfer is the
transfer time.

6.8 1. RAID is a set of physical disk drives viewed by the operating system as a single
logical drive. 2. Data are distributed across the physical drives of an array. 3.

CHAPTER 6
EXTERNAL MEMORY

-34-

Redundant disk capacity is used to store parity information, which guarantees data
recoverability in case of a disk failure.

6.9 0: Non-redundant 1: Mirrored; every disk has a mirror disk containing the same
data. 2: Redundant via Hamming code; an error-correcting code is calculated across
corresponding bits on each data disk, and the bits of the code are stored in the
corresponding bit positions on multiple parity disks. 3: Bit-interleaved parity;
similar to level 2 but instead of an error-correcting code, a simple parity bit is
computed for the set of individual bits in the same position on all of the data disks.
4: Block-interleaved parity; a bit-by-bit parity strip is calculated across
corresponding strips on each data disk, and the parity bits are stored in the
corresponding strip on the parity disk. 5: Block-interleaved distributed parity;
similar to level 4 but distributes the parity strips across all disks. 6: Block-
interleaved dual distributed parity; two different parity calculations are carried out
and stored in separate blocks on different disks.

6.10 The disk is divided into strips; these strips may be physical blocks, sectors, or some
other unit. The strips are mapped round robin to consecutive array members. A set
of logically consecutive strips that maps exactly one strip to each array member is
referred to as a stripe.

6.11 For RAID level 1, redundancy is achieved by having two identical copies of all
data. For higher levels, redundancy is achieved by the use of error-correcting
codes.

6.12 In a parallel access array, all member disks participate in the execution of every
I/O request. Typically, the spindles of the individual drives are synchronized so
that each disk head is in the same position on each disk at any given time. In an
independent access array, each member disk operates independently, so that
separate I/O requests can be satisfied in parallel.

6.13 For the constant angular velocity (CAV) system, the number of bits per track is
constant. At a constant linear velocity (CLV), the disk rotates more slowly for
accesses near the outer edge than for those near the center. Thus, the capacity of a
track and the rotational delay both increase for positions nearer the outer edge of
the disk.

6.14 1. Bits are packed more closely on a DVD. The spacing between loops of a spiral on
a CD is 1.6 µm and the minimum distance between pits along the spiral is 0.834
µm. The DVD uses a laser with shorter wavelength and achieves a loop spacing of
0.74 µm and a minimum distance between pits of 0.4 µm. The result of these two
improvements is about a seven-fold increase in capacity, to about 4.7 GB. 2. The
DVD employs a second layer of pits and lands on top of the first layer A dual-layer
DVD has a semireflective layer on top of the reflective layer, and by adjusting
focus, the lasers in DVD drives can read each layer separately. This technique
almost doubles the capacity of the disk, to about 8.5 GB. The lower reflectivity of
the second layer limits its storage capacity so that a full doubling is not achieved.
3. The DVD-ROM can be two sided whereas data is recorded on only one side of a
CD. This brings total capacity up to 17 GB.

6.15 The typical recording technique used in serial tapes is referred to as serpentine
recording. In this technique, when data are being recorded, the first set of bits is

-35-

recorded along the whole length of the tape. When the end of the tape is reached,
the heads are repositioned to record a new track, and the tape is again recorded on
its whole length, this time in the opposite direction. That process continues, back
and forth, until the tape is full.

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

6.1 It will be useful to keep the following representation of the N tracks of a disk in
mind:

0 1 • • • j – 1 • • • N – j • • • N – 2 N – 1

a. Let us use the notation Ps [j/t] = Pr [seek of length j when head is currently
positioned over track t]. Recognize that each of the N tracks is equally likely to
be requested. Therefore the unconditional probability of selecting any
particular track is 1/N. We can then state:

Ps[j /t] = 1

N
if t ≤ j – 1 OR t ≥ N – j

Ps[j /t] = 2

N
if j – 1 < t < N – j

In the former case, the current track is so close to one end of the disk (track 0 or
track N – 1) that only one track is exactly j tracks away. In the second case,
there are two tracks that are exactly j tracks away from track t, and therefore
the probability of a seek of length j is the probability that either of these two
tracks is selected, which is just 2/N.

b. Let Ps [K] = Pr [seek of length K, independent of current track position]. Then:

Ps K[] = Ps K /t[]
t=0

N−1
∑ × Pr current track is track t[]

=
1
N

Ps K / t[]
t=0

N−1
∑

From part (a), we know that Ps[K/t] takes on the value 1/N for 2K of the
tracks, and the value 2/N for (N – 2K) of the tracks. So

Ps K[] =
1
N
2K
N

+
2 N −2K()

N

 =

2K + 2 N −2K()
N 2 =

2
N
−
2K
N2

c.

-36-

E K[] = K × Ps K[]
K =0

N −1

∑ =
2K
N

−
2K2

N2K =0

N−1

∑ =
2
N

K
K=0

N−1

∑ −
2
N2

K2
K=0

N−1

∑

=
2
N

N −1()N
2

−
2
N2

N −1()N 2N −1()
6

= N −1() −
N −1() 2N −1()

3N

=
3N N −1() − N −1() 2N −1()

3N
=
N2 −1
3N

d. This follows directly from the last equation.

6.2

tA = tS +

1
2r

+
n

rN
tA = tS +

1
2r

+
n

rN

6.3 a. If we assume that the head starts at track 0, then the calculations are simplified.
If the request track is track 0, then the seek time is 0; if the requested track is
track 29,999, then the seek time is the time to traverse 29,999 tracks. For a
random request, on average the number of tracks traversed is 29,999/2 =
14999.5 tracks. At one ms per 100 tracks, the average seek time is therefore
149.995 ms.

b. At 7200 rpm, there is one revolution every 8.333 ms. Therefore, the average
rotational delay is 4.167 ms.

c. With 600 sectors per track and the time for one complete revolution of 8.333 ms,
the transfer time for one sector is 8.333 ms/600 = 0.01389 ms.

d. The result is the sum of the preceding quantities, or approximately 154 ms.

6.4 Each sector can hold 4 logical records. The required number of sectors is 300,000/4
= 75,000 sectors. This requires 75,000/96 = 782 tracks, which in turn requires
782/110 = 8 surfaces.

6.5 It depends on the nature of the I/O request pattern. On one extreme, if only a single
process is doing I/O and is only doing one large I/O at a time, then disk striping
improves performance. If there are many processes making many small I/O
requests, then a nonstriped array of disks should give comparable performance to
RAID 0.

-37-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

7.1 Human readable: Suitable for communicating with the computer user. Machine
readable: Suitable for communicating with equipment. Communication: Suitable
for communicating with remote devices

7.2 The most commonly used text code is the International Reference Alphabet (IRA),
in which each character is represented by a unique 7-bit binary code; thus, 128
different characters can be represented.

7.3 Control and timing. Processor communication. Device communication. Data
buffering. Error detection.

7.4 Programmed I/O: The processor issues an I/O command, on behalf of a process, to
an I/O module; that process then busy-waits for the operation to be completed
before proceeding. Interrupt-driven I/O: The processor issues an I/O command on
behalf of a process, continues to execute subsequent instructions, and is interrupted
by the I/O module when the latter has completed its work. The subsequent
instructions may be in the same process, if it is not necessary for that process to
wait for the completion of the I/O. Otherwise, the process is suspended pending
the interrupt and other work is performed. Direct memory access (DMA): A DMA
module controls the exchange of data between main memory and an I/O module.
The processor sends a request for the transfer of a block of data to the DMA module
and is interrupted only after the entire block has been transferred.

7.5 With memory-mapped I/O, there is a single address space for memory locations
and I/O devices. The processor treats the status and data registers of I/O modules
as memory locations and uses the same machine instructions to access both
memory and I/O devices. With isolated I/O, a command specifies whether the
address refers to a memory location or an I/O device. The full range of addresses
may be available for both.

7.6 Four general categories of techniques are in common use: multiple interrupt lines;
software poll; daisy chain (hardware poll, vectored); bus arbitration (vectored).

7.7 The processor pauses for each bus cycle stolen by the DMA module.

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

7.1 In the first addressing mode, 28 = 256 ports can be addressed. Typically, this would
allow 128 devices to be addressed. However, an opcode specifies either an input or
output operation, so it is possible to reuse the addresses, so that there are 256 input
port addresses and 256 output port addresses. In the second addressing mode, 216

= 64K port addresses are possible.

CHAPTER 7
INPUT/OUTPUT

-38-

7.2 In direct addressing mode, an instruction can address up to 216 = 64K ports. In
indirect addressing mode, the port address resides in a 16-bit registers, so again,
the instruction can address up to 216 = 64K ports.

7.3 64 KB

7.4 Using non-block I/O instructions, the transfer takes 20 × 128 = 2560 clock cycles.
With block I/O, the transfer takes 5 × 128 = 640 clock cycles (ignoring the one-time
fetching of the iterative instruction and its operands). The speedup is
 (2560 – 640)/2560 = 0.75, or 75%. Source: [PROT88].

7.5 a. Each I/O device requires one output (from the point of view of the processor)
port for commands and one input port for status.

b. The first device requires only one port for data, while the second devices
requires and input data port and an output data port. Because each device
requires one command and one status port, the total number of ports is seven.

c. seven. Source: [PROT88].

7.6 a. The printing rate is slowed to 5 cps.
b. The situation must be treated differently with input devices such as the

keyboard. It is necessary to scan the buffer at a rate of at least once per 60 ms.
Otherwise, there is the risk of overwriting characters in the buffer. Source:
[PROT88].

7.7 At 8 MHz, the processor has a clock period of 0.125 µs, so that an instruction cycle
takes 12 × 0.125 = 1.5 µs. To check status requires one input-type instruction to
read the device status register, plus at least one other instruction to examine the
register contents. If the device is ready, one output-type instruction is needed to
present data to the device handler. The total is 3 instructions, requiring 4.5 µs.
Source: [PROT88].

7.8 Advantages of memory mapped I/O:
1. No additional control lines are needed on the bus to distinguish memory

commands from I/O commands.
2. Addressing is more flexible. Examples: The various addressing modes of the

instruction set can be used, and various registers can be used to exchange
data with I/O modules.

Disadvantages of memory-mapped I/O:
1. Memory-mapped I/O uses memory-reference instructions, which in most

machines are longer than I/O instructions. The length of the program
therefore is longer.

2. The hardware addressing logic to the I/O module is more complex, because
the device address is longer.

7.9 a. The processor scans the keyboard 10 times per second. In 8 hours, the number
of times the keyboard is scanned is 10 × 60 × 60 × 8 = 288,000.

b. Only 60 visits would be required. The reduction is 1 – (60/288000) = 0.999, or
99.9% Source: [PROT88].

-39-

7.10 a. The device generates 8000 interrupts per second or a rate of one every 125 µs. If
each interrupt consumes 100 µs, then the fraction of processor time consumed
is 100/125 = 0.8

b. In this case, the time interval between interrupts is 16 × 125 = 2000 µs. Each
interrupt now requires 100 µs for the first character plus the time for
transferring each remaining character, which adds up to 8 × 15 = 120 µs, for a
total of 220 µs. The fraction of processor time consumed is 220/2000 = 0.11

c. The time per byte has been reduced by 6 µs, so the total time reduction is 16 × 6
= 96 µs. The fraction of processor time consumed is therefore (220 – 96)/2000 =
0.062. This is an improvement of almost a factor of 2 over the result from part
(b). Source: [PROT88].

7.11 If a processor is held up in attempting to read or write memory, usually no
damage occurs except a slight loss of time. However, a DMA transfer may be to or
from a device that is receiving or sending data in a stream (e.g., disk or tape), and
cannot be stopped. Thus, if the DMA module is held up (denied continuing access
to main memory), data will be lost.

7.12 Let us ignore data read/write operations and assume the processor only fetches
instructions. Then the processor needs access to main memory once every
microsecond. The DMA module is transferring characters at a rate of 1200
characters per second, or one every 833 µs. The DMA therefore "steals" every 833rd
cycle. This slows down the processor approximately

1

833
×100% = 0.12%

7.13 a. For the actual transfer, the time needed is (128 bytes)/(50 KBps) = 2.56 ms.
Added to this is the time to transfer bus control at the beginning and end of the
transfer, which is 250 + 250 = 500 ns. This additional time is negligible, so that
the transfer time can be considered as 2.56 ms.

b. The time to transfer one byte in cycle stealing mode is 250 + 500 + 250 = 1000 ns
= 1 µs. Total amount of time the bus is occupied for the transfer is 128 µs. This
is less than the result from part (a) by a factor of 20. Source: [PROT88].

7.14 a. At 5 MHz, on clock cycle takes 0.2 µs. A transfer of one byte therefore takes 0.6
µs.

b. The data rate is 1/(0.6 × 10–6) = 1.67 MB/s
c. Two wait states add an addition 0.4 µs, so that a transfer of one byte takes 1 µs.

The resulting data rate is 1 MB/s. Source: [PROT88].

7.15 A DMA cycle could take as long as 0.75 µs without the need for wait states. This
corresponds to a clock period of 0.75/3 = 0.25 µs, which in turn corresponds to a
clock rate of 4 MHz. This approach would eliminate the circuitry associated with
wait state insertion and also reduce power dissipation. Source: [PROT88].

7.16 a. Telecommunications links can operate continuously, so burst mode cannot be
used, as this would tie up the bus continuously. Cycle-stealing is needed.

b. Because all 4 links have the same data rate, they should be given the same
priority. Source: [PROT88].

7.17 Only one device at a time can be serviced on a selector channel. Thus,

-40-

Maximum rate = 800 + 800 + 2 × 6.6 + 2 × 1.2 + 10 × 1 = 1625.6 KBytes/sec

7.18 a. The processor can only devote 5% of its time to I/O. Thus the maximum I/O
instruction execution rate is 106 × 0.05 = 50,000 instructions per second. The I/O
transfer rate is therefore 25,000 words/second.

b. The number of machine cycles available for DMA control is

106(0.05 × 5 + 0.95 × 2) = 2.15 × 106

If we assume that the DMA module can use all of these cycles, and ignore any
setup or status-checking time, then this value is the maximum I/O transfer
rate.

7.19 For each case, compute the fraction g of transmitted bits that are data bits. Then the
maximum effective data rate ER is

ER = gR

a. There are 7 data bits, 1 start bit, 1.5 stop bits, and 1 parity bit.

g = 7
1 + 7 + 1 + 1.5 = 7/10.5

ER = 0.67 × R

b. Each frame contains 48 + 128 = 176 bits. The number of characters is 128/8 = 16,
and the number of data bits is 16 × 7 = 112.

ER= 112
176 × R = 0.64 × R

c. Each frame contains 48 = 1024 bits. The number of characters is 1024/8 = 128,
and the number of data bits is 128 × 7 = 896.

ER= 896
1072 × R = 0.84 × R

d. With 9 control characters and 16 information characters, each frame contains
(9 + 16) × 8 = 200 bits. The number of data bits is 16 × 7 = 112 bits.

ER= 112
200 × R = 0.56 × R

e. With 9 control characters and 128 information characters, each frame contains
 (9 + 128) × 8 = 1096 bits. The number of data bits is 128 × 7 = 896 bits.

ER= 896
1096 × R = 0.82 × R

7.20 a. Assume that the women are working, or sleeping, or otherwise engaged. The
first time the alarm goes off, it alerts both that it is time to work on apples. The
next alarm signal causes apple-server to pick up an apple an throw it over the

-41-

fence. The third alarm is a signal to Apple-eater that he can pick up and eat the
apple. The transfer of apples is in strict synchronization with the alarm clock,
which should be set to exactly match Apple-eater's needs. This procedure is
analogous to standard synchronous transfer of data between a device and a
computer. It can be compared to an I/O read operation on a typical bus-based
system. The timing diagram is as follows:

On the first clock signal, the port address is output to the address bus. On the
second signal, the I/O Read line is activated, causing the selected port to place its
data on the data bus. On the third clock signal, the CPU reads the data.

A potential problem with synchronous I/O will occur if Apple-eater's
needs change. If he must eat at a slower or faster rate than the clock rate, he will
either have too many apples or too few.

b. The women agree that Apple-server will pick and throw over an apple
whenever he sees Apple-eater's flag waving. One problem with this approach
is that if Apple-eater leaves his flag up, Apple-server will see it all the time and
will inundate her friend with apples. This problem can be avoided by giving
Apple-server a flag and providing for the following sequence:

1. Apple-eater raises her "hungry" flag when ready for an apple.
2. Apple-server sees the flag and tosses over an apple.
3. Apple-server briefly waves her "apple-sent" flag
4. Apple-eater sees the "apple-sent" flag, takes down her "hungry" flag, and

grabs the apple.
5. Apple-eater keeps her "hungry" flag stays down until she needs another

apple.

This procedure is analogous to asynchronous I/O. Unfortunately, Apple-
server may be doing something other than watching for her friend's flag (like
sleeping!). In that case, she will not see the flag, and Apple-eater will go
hungry. One solution is to not permit apple-server to do anything but look for
her friend's flag. This is a polling, or wait-loop, approach, which is clearly

-42-

inefficient.

c. Assume that the string that goes over the fence and is tied to Apple-server's
wrist. Apple-eater can pull the string when she needs an apple. When Apple-
server feels a tug on the string, she stops what she is doing and throws over an
apple. The string corresponds to an interrupt signal and allows Apple-server to
use her time more efficiently. Moreover, if Apple-server is doing something
really important, she can temporarily untie the string, disabling the interrupt.

7.21

-43-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

8.1 The operating system (OS) is the software that controls the execution of programs
on a processor and that manages the processor's resources.

8.2 Program creation: The operating system provides a variety of facilities and services,
such as editors and debuggers, to assist the programmer in creating programs.
Program execution: A number of tasks need to be performed to execute a program.
Instructions and data must be loaded into main memory, I/O devices and files
must be initialized, and other resources must be prepared. Access to I/O devices:
Each I/O device requires its own peculiar set of instructions or control signals for
operation. Controlled access to files: In the case of files, control must include an
understanding of not only the nature of the I/O device (disk drive, tape drive) but
also the file format on the storage medium. System access: In the case of a shared or
public system, the operating system controls access to the system as a whole and to
specific system resources. Error detection and response: A variety of errors can
occur while a computer system is running. Accounting: A good operating system
will collect usage statistics for various resources and monitor performance
parameters such as response time.

8.3 Long-term scheduling: The decision to add to the pool of processes to be executed.
Medium-term scheduling: The decision to add to the number of processes that are
partially or fully in main memory. Short-term scheduling: The decision as to which
available process will be executed by the processor

8.4 A process is a program in execution, together with all the state information
required for execution.

8.5 The purpose of swapping is to provide for efficient use of main memory for process
execution.

8.6 Addresses must be dynamic in the sense that absolute addresses are only resolved
during loading or execution.

8.7 No, if virtual memory is used.

8.8 No.

8.9 No.

8.10 The TLB is a cache that contains those page table entries that have been most
recently used. Its purpose is to avoid, most of the time, having to go to disk to
retrieve a page table entry.

CHAPTER 8
OPERATING SYSTEM SUPPORT

-44-

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

8.1 The answers are the same for (a) and (b). Assume that although processor
operations cannot overlap, I/O operations can.

1 Job: TAT = NT Processor utilization = 50%
2 Jobs: TAT = NT Processor utilization = 100%
4 Jobs: TAT = (2N – 1)NT Processor utilization = 100%

8.2 I/O-bound programs use relatively little processor time and are therefore favored
by the algorithm. However, if a processor-bound process is denied processor time
for a sufficiently long period of time, the same algorithm will grant the processor to
that process because it has not used the processor at all in the recent past.
Therefore, a processor-bound process will not be permanently denied access.

8.3 Main memory can hold 5 pages. The size of the array is 10 pages. If the array is
stored by rows, then each of the 10 pages will need to be brought into main
memory once. If it is stored by columns, then each row is scattered across all ten
pages, and each page will have to be brought in 100 times (once for each row
calculation).

8.4 The number of partitions equals the number of bytes of main memory divided by
the number of bytes in each partition: 224/216 = 28. Eight bits are needed to identify
one of the 28 partitions.

8.5 Let s and h denote the average number of segments and holes, respectively. The
probability that a given segment is followed by a hole in memory (and not by
another segment) is 0.5, because deletions and creations are equally probable in
equilibrium. so with s segments in memory, the average number of holes must be
s/2. It is intuitively reasonable that the number of holes must be less than the
number of segments because neighboring segments can be combined into a single
hole on deletion.

8.6 a. Split binary address into virtual page number and offset; use VPN as index into
page table; extract page frame number; concatenate offset to get physical
memory address

b. (i) 1052 = 1024 + 28 maps to VPN 1 in PFN 7, (7 × 1024+28 = 7196)
(ii) 2221 = 2 × 1024 + 173 maps to VPN 2, page fault
(iii) 5499 = 5 × 1024 + 379 maps to VPN 5 in PFN 0, (0 × 1024+379 = 379)

8.7 With very small page size, there are two problems: (1) Because very little data is
brought in with each page, there will need to be a lot of I/O to bring in the many
small pages. (2) The overhead (page table size, length of field for page number) will
be disproportionately high.

If pages are very large, main memory will be wasted because the principle of
locality suggests that only a small part of the large page will be used.

8.8 9 and 10 page transfers, respectively. This is referred to as "Belady's anomaly," and
was reported in "An Anomaly in Space-Time Characteristics of Certain Programs
Running in a Paging Machine," by Belady et al, Communications of the ACM, June
1969.

-45-

8.9 A total of fifteen pages are referenced, the hit ratios are:

N 1 2 3 4 5 6 7 8
Ratio 0/15 0/15 2/15 3/15 5/15 8/15 8/15 8/15

8.10 The principal advantage is a savings in physical memory space. This occurs for
two reasons: (1) a user page table can be paged in to memory only when it is
needed. (2) The operating system can allocate user page tables dynamically,
creating one only when the process is created.

Of course, there is a disadvantage: address translation requires extra work.

8.11 The machine language version of this program, loaded in main memory starting at
address 4000, might appear as:

4000 (R1) ← ONE Establish index register for i
4001 (R1) ← n Establish n in R2
4002 compare R1, R2 Test i > n
4003 branch greater 4009
4004 (R3) ← B(R1) Access B[i] using index register R1
4005 (R3) ← (R3) + C(R1) Add C[i] using index register R1
4006 A(R1) ← (R3) Store sum in A[i] using index register R1
4007 (R1) ← (R1) + ONE Increment i
4008 branch 4002
6000-6999 storage for A
7000-7999 storage for B
8000-8999 storage for C
9000 storage for ONE
9001 storage for n

The reference string generated by this loop is

494944(47484649444)1000

consisting of over 11,000 references, but involving only five distinct pages.

8.12 The S/370 segments are fixed in size and not visible to the programmer. Thus,
none of the benefits listed for segmentation are realized on the S/370, with the
exception of protection. The P bit in each segment table entry provides protection
for the entire segment.

8.13 On average, p/2 words are wasted on the last page. Thus the total overhead or
waste is w = p/2 + s/p. To find the minimum, set the first derivative to 0.

dw
dp

=
1
2
−
s
p2

= 0

p = 2s

8.14 There are three cases to consider:

-46-

Location of referenced
word

Probability Total time for access in ns

In cache 0.9 20
Not in cache, but in main
memory

(0.1)(0.6) = 0.06 60 + 20 = 80

Not in cache or main
memory

(0.1)(0.4) = 0.04 12ms + 60 + 20 = 12000080

So the average access time would be:

Avg = (0.9)(20) + (0.06)(80) + (0.04)(12000080) = 480026 ns

8.15

232 memory
211 page size

= 221 page frames

Segment: 0
1
2
3

0

7

Page descriptor
table

00021ABC

Main memory
(232 bytes)

232 memory
211 page size

= 221 page frames

a. 8 × 2K = 16K
b. 16K × 4 = 64K
c. 232 = 4 GBytes

8.16 •The starting physical address of a segment is always evenly divisible by 1048, i.e.,
its rightmost 11 bits are always 0.

•Maximum logical address space = 29 = 512 segments (× 222 bytes/segment) = 231
bytes.

•Format of logical address:

segment
number (9) offset (22)

-47-

•Entries in the mapping table: 29 = 512.
•Number of memory management units needed = 4.
•Each 9-bit segment number goes to an MMU; 7 bits are needed for the 128-entry

table, the other 2 most significant bits are decoded to select the MMU.
•Each entry in the table is 22 bits.

8.17 a.
page number

(5) offset (11)

b. 32 entries, each entry is 9 bits wide.
c. If total number of entries stays at 32 and the page size does not change, then

each entry becomes 8 bits wide.

8.18 The system operator can review this quantity to determine the degree of "stress" on
the system. By reducing the number of active jobs allowed on the system, this
average can be kept high. A typical guideline is that this average should be kept
above 2 minutes. This may seem like a lot, but it isn't.

-48-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

9.1 Sign–Magnitude Representation: In an N-bit word, the left-most bit is the sign (0 =
positive, 1 = negative) and the remaining N – 1 bits comprise the magnitude of the
number. Twos Complement Representation: A positive integer is represented as in
sign magnitude. A negative number is represented by taking the Boolean
complement of each bit of the corresponding positive number, then adding 1 to the
resulting bit pattern viewed as an unsigned integer. Biased representation: A fixed
value, called the bias, is added to the integer.

9.2 In sign-magnitude and twos complement, the left-most bit is a sign bit. In biased
representation, a number is negative if the value of the representation is less than
the bias.

9.3 Add additional bit positions to the left and fill in with the value of the original sign
bit.

9.4 Take the Boolean complement of each bit of the positive number, then adding 1 to
the resulting bit pattern viewed as an unsigned integer.

9.5 When the operation is performed on the n-bit integer –2n–1 (one followed by n – 1
zeros).

9.6 The twos complement representation of a number is the bit pattern used to
represent an integer. The twos complement of a number is the operation that
computes the negation of a number in twos complement representation.

9.7 The algorithm for performing twos complement addition involves simply adding
the two numbers in the same way as for ordinary addition for unsigned numbers,
with a test for overflow. For multiplication, if we treat the bit patterns as unsigned
numbers, their magnitude is different from the twos complement versions and so
the magnitude of the result will be different.

9.8 Sign, significand, exponent, base.

9.9 An advantage of biased representation is that nonnegative floating-point numbers
can be treated as integers for comparison purposes.

9.10 Positive overflow refers to integer representations and refers to a number that is
larger than can be represented in a given number of bits. Exponent overflow refers
to floating point representations and refers to a positive exponent that exceeds the
maximum possible exponent value. Significand overflow occurs when the
addition of two significands of the same sign result in a carry out of the most
significant bit.

CHAPTER 9
COMPUTER ARITHMETIC

-49-

9.11 1. Check for zeros. 2. Align the significands. 3. Add or subtract the significands.
4. Normalize the result.

9.12 To avoid unnecessary loss of the least significant bit.

9.13 Round to nearest: The result is rounded to the nearest representable number.
Round toward +∞: The result is rounded up toward plus infinity. Round toward
–∞: The result is rounded down toward negative infinity. Round toward 0: The
result is rounded toward zero.

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

9.1 Sign Magnitude: 512 = 0000 0010 0000 0000
–29 = 1000 0000 0001 1101

Two’s Complement: 512 = 0000 0010 0000 0000
–29 = 1111 1111 1110 0011

9.2 1101011: Because this starts with a leftmost 1, it is a negative number. The
magnitude of the negative number is determined by flipping the bits and adding 1:

0010100 + 1 = 0010101

This is 21, so the original value was –21.

0101101

Because this starts with a leftmost 0, it is a positive number and we just compute
the magnitude as an unsigned binary number, which is 45.

9.3 a.

A = − 2n−1 − 1()an−1 + 2 i ai

i=0

n−2
∑

b. From –(2n–1 – 1) through (2n–1 – 1)
c. (1) Add the two numbers as if they were unsigned integers. (2) If there is a carry

out of the sign position, then add that bit to the first bit position of the result and
propagate carries as necessary. This is known as the end-around carry rule. (3)
An overflow occurs if two positive numbers are added and the result is negative
of if two negative numbers are added and the result is positive.

9.4 sign-magnitude ones complement
Range –(2n–1 – 1) to (2 n–1 – 1) –(2n–1 – 1) to (2n–1 – 1)
Number of
representations of 0 2 2
Negation Complement the sign bit Complement each bit
Expansion of bit
length

Move the sign bit to the new
leftmost bit; fill in with zeros

Fill all new bit
positions to the left
with the sign bit

Subtract B from A
Complement the sign bit of B and
add B to A using rules for addition
of sign-magnitude numbers

Take the ones
complement of B and
add it to A

-50-

Rules for adding two sign-magnitude numbers:
1. If A and B have the same sign, then add the two magnitudes. If there is a carry

out of the last magnitude bit, there is an overflow. If there is no carry the result
is the sum of the magnitudes with the same sign bit as A and B.

2. (a) If the magnitude of A equals the magnitude of B, the result is zero; (b) if the
magnitude of A is greater than the magnitude of B, then the sign bit of the
result is the sign of A, and the magnitude of the result is the magnitude of A
minus the magnitude of B. (b) Otherwise, the sign bit of the result is the sign of
B, and the magnitude of the result is the magnitude of B minus the magnitude
of A.

9.5 The twos complement of the original number.

9.6 a. We can express 2n as (1 + Z), where Z is an n-bit quantity of all 1 bits. Then,
treating all quantities as unsigned integers, we have (2n – X) = 1 + Z – X. But (Z
– X) results in the Boolean complement of each bit of X. Example:

 11111111
–01110100

 10001011

Therefore, (2n – X) adds one to the quantity formed by taking the Boolean
complement of each bit of X, which is how we defined the twos complement of
X.

b. In Figure 9.5a, notice that we can subtract X or (add –X) by moving 16 – X
positions clockwise. Similarly, in Figure 9.5b, we can subtract X or (add –X) by
moving 2n – X positions clockwise. But the quantity (2n – X) is what we just
defined as the twos complement of X, which is the twos complement
representation of –X. So we can subtract X by adding –X.

9.7 The tens complement is calculated as 105 – 13250 = 100000 -13250 = 86750.

9.8 We subtract M – N, where M = 72532 and N = 13250:

M = 72532
tens complement of N = +86750

sum = 159282
discard carry digit = –100000

result = 59282

9.9
xn–1 0 0 0 0 1 1 1 1
yn–1 0 0 1 1 0 0 1 1Input
cn–2 0 1 0 1 0 1 0 1
zn–1 0 0 1 0 1 0 1 1Output

v 0 1 0 0 0 0 1 0

-51-

9.10
 +6 00000110
+13 00001101
+19 00010011

 –6 11111010
+13 00001101
 +7 00000111

 +6 00000110
–13 11110011
 –7 11111001

 –6 11111010
–13 11110011
–19 11101101

9.11 Add the twos complement, and check for overflow. For b, we must first sign-
extend the second term.

a. 111000 b. 11001100 c. 111100001111 d. 11000011
 + 001101 + 00010010 + 001100001101 + 00011000
 1 000101 11011110 1 001000011100 11011000

In all cases, the signs of the two numbers to be added are different, so there is no
overflow.

9.12 The overflow rule was stated as follows: If two numbers are added, and they are
both positive or both negative, then overflow occurs if and only if the result has
the opposite sign. There are four cases:
•Both numbers positive (sign bit = 0) and no carry into the leftmost bit position:

There is no carry out of the leftmost bit position, so the XOR is 0. The result has a
sign bit = 0, so there is no overflow.

•Both numbers positive and a carry into the leftmost bit position: There is no carry
out of the leftmost position, so the XOR is 1. The result has a sign bit = 1, so there
is overflow.

•Both numbers negative and no carry into the leftmost position: There is a carry
out of the leftmost position, so the XOR is 1. The result has a sign bit of 0, so there
is overflow.

•Both numbers negative and a carry into the leftmost position. There is a carry out
of the leftmost position, so the XOR is 0. The result has a sign bit of 1, so there is
no overflow.

Therefore, the XOR result always agrees with the presence or absence of overflow.

9.13 An overflow cannot occur because addition and subtraction alternate. As a
consequence, the two numbers that are added always have opposite signs, a
condition that excludes overflow.

9.14 A Q Q–1 M
0000 1010 0 0101 Initial
0000 0101 0 0101 Shift
 1011 0101 0 0101 A ← A – M
1101 1010 1 0101 Shift
0010 1010 1 0101 A ← A + M
0001 0101 0 0101 Shift
1100 0101 0 0101 A ← A – M
1110 0010 1 0101 Shift

-52-

9.15 Using M=010111 (23) and Q = 010011 (19) we should get 437 as the result.

A Q Q–1 M
000000 010111 0 010011 Initial
101101 010111 0 010011 A ← A – M
110110 101011 1 010011 Shift
111011 010101 1 010011 Shift
111101 101010 1 010011 Shift
010000 101010 1 010011 A ← A + M
001000 010101 0 010011 Shift
110101 010101 0 010011 A ← A – M
111010 101010 1 010011 Shift
001101 101010 1 010011 A ← A + M
000110 110101 1 010011 Shift

Answer = 0001 1011 0101 (which is 437)

9.16 An n-digit number in base B has a maximum value of Bn – 1. We need to show that
the maximum product is less than B2n – 1.

(Bn – 1) (Bn – 1) = B2n – 2Bn + 1 ≤ B2n – 1.

The inequality is true if

–2Bn + 1 ≤ –1 or 1 ≤ Bn

This is always true for B ≥ 2 and n ≥ 1.

-53-

9.17 A Q M
00000000 10010011 1011 Initial
00000001 00100110 1011 Shift
11110110 1011 A ← A – M
00000001 00100110 1011 Restore
00000010 01001100 1011 Shift
11110111 1011 A ← A – M
00000010 01001100 1011 Restore
00000100 10011000 1011 Shift
11111001 1011 A ← A – M
00000100 10011000 1011 Restore
00001001 00110000 1011 Shift
11111100 1011 A ← A – M
00001001 00110000 1011 Restore
00010010 01100000 1011 Shift
00000111 1011 A ← A – M
00000111 01100001 1011 Q0 ← 1
00001110 11000010 1011 Shift
00000011 1011 A ← A – M
00000011 11000011 1011 Q0 ← 1
00000111 10000110 1011 Shift
11111100 1011 A ← A – M
00000111 10000110 1011 Restore
00001111 00001100 1011 Shift
00000100 1011 A ← A – M
00000100 00001101 1011 Q0 ← 1

9.18 The nonrestoring division algorithm is based on the observation that a restoration
in iteration I of the form A(I) ← A(I) + M is followed in iteration (I + 1) by the
subtraction A(I+1) ← 2A(I) – M. These two operations can be combined into a
single operation: A(I+1) ← 2A(I) + M.

9.19 False. For a negative quotient, truncation yields a larger number.

-54-

9.20 Divisor = 13 = (001101)2 is placed in M register.
Dividend = –145 = (111101101111)2 is placed in A and Q registers

A Q M
111101 101111 001101 Initial
111011 011110 Shift
001101 Add
001000
111011 011110 Restore
110110 111100 Shift
001101 Add
000011
110110 111100 Restore
101101 111000 Shift
001101 Add
111010 111001 Q0 ← 1
110101 110010 Shift
001101 Add
000110
110101 110010 Restore
101011 100100 Shift
001101 Add
111000 100101 Q0 ← 1
110001 001010 Shift
001101 Add
111110 001011 Q0 ← 1

Remainder = (111110)2 = –2
Quotient = twos complement of 001011 = (110101)2 = –11

9.21 a. Planck's constant:
6.63 × 10–27 → 0.00000000000000000000000000663

29

b. Avogadro's number:

6.02 × 1023 → 602000000000000000000000.0
24

-55-

To represent the approximation of Planck's constant 29 radix-10 fractional
digits are needed, while representing the approximation of Avogadro's number
requires 24 integer decimal digits. To represent the approximations of both
Planck's constant and Avogadro's number in a fixed-point number format, 29 +
54 = 53 radix-10 digits are needed.

b. In the considered radix-10 base-10 biased representation for the exponent (such
that Ebiased = E + 50), the exponent of both Planck's constant and Avogadro's
number can be represented using 2 digits, because 27+50 = 23 and 23+50 = 73.
To represent the significands, 3 radix-10 digits are needed. Therefore, to
represent the approximations of both Planck's constant and Avogadro's
number in a floating-point radix- 10 base-10 number format, 3 + 2 = 5 decimal
digits are needed. Source: [ERCE04]

9.22 a. bX–q(1 – b–p), b–q–p

b. bX–q(1 - b–p), b–q–1

9.23 a. 1 10000001 01000000000000000000000
b. 1 10000001 10000000000000000000000
c. 1 01111111 10000000000000000000000
d. 384 = 110000000 = 1.1 × 21000

Change binary exponent to biased exponent:
127 + 8 = 135 = 10000111
Format: 0 10000111 00000000000000000000000

e. 1/16 = 0.0001 = 1.0 × 2–100

127 – 4 = 123 = 01111011
Format: 0 01111011 00000000000000000000000

f. –1/32 = –0.00001 = –1.0 × 2–101

127 – 5 = 122 = 01111010
Format: 0 01111010 00000000000000000000000

9.24 a. –28 (don't forget the hidden bit)
b. 13/16 = 0.8125
c. 2

-56-

9.25 In this case, the exponent has a bias of 3. Special cases are shaded in the table. The
first shaded column contains the denormalized numbers. It is worthwhile to study
this table to get a feel for the distribution and spacing of numbers represented in
this format.

Exponentsign bit and
significand

000 001 010 011 100 101 110 111
0 000 0 0.25 0.5 1 2 4 8 +∞
0 001 0.03125 0.28125 0.5625 1.125 2.25 4.5 9 NaN
0 010 0.0625 0.3125 0.625 1.25 2.5 5 10 NaN
0 011 0.09375 0.34375 0.6875 1.375 2.75 5.5 11 NaN
0 100 0.125 0.375 0.75 1.5 3 6 12 NaN
0 101 0.15625 0.40625 0.8125 1.625 3.25 6.5 13 NaN
0 110 0.1875 0.4375 0.875 1.75 3.5 7 14 NaN
0 111 0.21875 0.46875 0.9375 1.875 3.75 7.5 15 NaN
1 000 –0 –0.25 –0.5 –1 –2 –4 –8 –∞
1 001 –0.03125 –0.28125 –0.5625 –1.125 –2.25 –2.5 –9 NaN
1 010 –0.0625 –0.3125 –0.625 –1.25 –2.5 –5 –10 NaN
1 011 –0.09375 –0.34375 –0.6875 –1.375 –2.75 –5.5 –11 NaN
1 100 –0.125 –0.375 –0.75 –1.5 –3 –6 –12 NaN
1 101 –0.15625 –0.40625 –0.8125 –1.625 –3.25 –6.5 –13 NaN
1 110 –0.1875 –0.4375 –0.875 –1.75 –3.5 –7 –14 NaN
1 111 –0.21875 –0.46875 –0.9375 –1.875 –3.75 –7.5 –15 NaN

9.26 a. 1.0 = +1/16 × 161 = 0 100 0001 0001 0000 0000 0000 0000 0000
b. 0.5 = +8/16 × 160 = 0 100 0000 1000 0000 0000 0000 0000 0000
c. 1/64 = +4/16 × 16–1 = 0 011 1111 0100 0000 0000 0000 0000 0000
d. 0.0 = +0 × 16–64 = 0 000 0000 0000 0000 0000 0000 0000 0000
e. –15.0 = –15/16 × 161 = 1 100 0001 1111 0000 0000 0000 0000 0000
f. 5.4 × 10–79 ≈ +1/16 × 16–64 = 0 000 0000 0000 0000 0000 0000 0000 0000
g. 7.2 × 1075 ≈ 1 × 1663 = 0 111 1111 1111 1111 1111 1111 1111 1111
h. 65535 = 164 –1 = 0 100 0100 1111 1111 1111 1111 0000 0000

9.27 Step 1: Sign positive
Step 2: Extract the exponent (5B)16 and subtract the bias (40)16, yielding

(1B)16 = 27
Step 3: The significand (CA 0000)16 = 12/16 + 10/256 = 0.7890625.
The decimal result is 0.7890625 × 1627.

9.28 The base is irrelevant
a. Bias = 26–1 = 25 = 32
b. Bias = 27–1 = 26 = 64

-57-

9.29

Expressible Negative
Numbers

Negative
Overflow

Positive
Overflow

Negative
Underflow

Zero

Positive
Underflow

Expressible Positive
Numbers

0 0.5 × 2–1022– 0.5 × 2–1022– (1 – 2–53) × 21023 (1 – 2 –53) × 21023

9.30 a. 1. Express the number in binary form: 1011010000 (normalize to 1.1bbbb)
2. Normalize the number into the form 0.1bbbbbbbbbbbbb

0.1011010000 × 2k where k = 10(base10) or 1010(base2)
0.1011010000 × 2(1010)

Once in normalized form every number will have a 1 after the decimal
point. We do not need to store this number; it is implicit. Therefore in the
Significand field we will store 01101000000000000000000.

3. For the 8-bit exponent field, a bias of 128 is used. Add the bias to the
exponent and store the answer: 1010 + 10000000 = 1001010

4. Sign bit = 1
5. Result = 1 1001010 01101000000000000000000

b. We have 0.645 = 0.101001...; therefore the significand is 01001 (the first 1 is
implicit). The sign = 0, and the exponent = 0.
Result: 0 0000000 01001000000000000000000

9.31 There are 232 different bit patterns available. However, because of special cases, not
all of these bit patterns represent unique numbers. In particular, an exponent of all
ones together with a nonzero fraction is given the value NaN, which means Not a
Number, and is used to signal various exception conditions. Because the fraction
field is 23 bits, the number of nonzero fractions is 223 – 1. The sign bit may be 0 or 1
for this case, so the total number of NaN values is 224 – 2. Therefore, the number of
different numbers that can be represented is 232 – 224 + 2. This number includes
both plus and minus zero and plus and minus infinity. If we exclude minus zero
and plus and minus infinity, then the total is 232 – 224 –1.

9.32 We have 0.4 × 20. Because 0.4 is less than 0.5, this is not normalized. Thus, we
rewrite as

0.4 = 0.8 × 2–1

Next, convert 0.8 to binary, we have repeating binary number: 0.110011001100...
The closest we can get (7 bits) is 0.1100110. Converting this back to decimal, we
have

(1/2 + 1/4 + 1/32 + 1/64) × 2-1 = 0.3984375

The relative error is 0.4 - 0.3984375
0.4 = 0.0039

9.33 EA = A - A'
A

-58-

Truncation: EA = 1.427 - 1.42
1.427 = 0.0049

Rounding: EA = 1.427 -1.43
1.427 = –0.0021

9.34 Cancellation reveals previous errors in the computation of X and Y. For example, if
ε is small, we often get poor accuracy when computing f(x + ε) - f(x), because the
rounded calculation of f(x + ε) destroys much of the information about ε. It is
desirable to rewrite such formulas as ε × g(x,ε), where g(x,ε) = f (x +ε) − f (x)

ε
 is

first computed symbolically. Thus, if f(x) = x2, then g(x,ε) = 2x + ε; if f(x) = x ,
then g(x,ε) = 1

x + ε + x
 .

9.35 We have

EA = A - A'
A = 1 – A'

A

A' = A(1 – EA)
B' = B (1 – EB)
A'B' = AB (1 – EA)(1 -EB) = AB [1– (EA +EB) + EAEB]

≈ AB [1– (EA + EB)]

The product term EAEB should be negligible in comparison to the sum.
Consequently
EAB = EA +EB.

9.36 a. EA = 0.22288 - 0.2228
0.2228 = 0.00036

 EB = 0.22211 - 0.2221
0.22211 = 0.00045

b. C = A – B = 0.00077
 C'= A' – B' = 0.0007
 EC = 0.00077 - 0.0007

0.00077 = 0.09

9.37 a. (2.50000 × 10–60) × (3.50000 × 10–43) = 8.75000 × 10–103 → 0.00088 × 10–99

The otherwise exact product underflows and must be denormalized by
four digits. The number then requires rounding.

b. (2.50000 × 10–60) × (3.50000 × 10–60) = 8.75000 × 10–120 → 0.0
The intermediate result falls below the underflow threshold and must be

set to zero.
c. (5.67834 × 10–97) – (5.67812 × 10–97) = 2.20000 × 10–101 → 0.02200 × 10–99

This example illustrates how underflowed sums and differences of
numbers in the same format are always free from rounding errors.

-59-

9.38 a. The exponents are equal. Therefore the mantissas are added, keeping the
common exponent, and the sum is renormalized if necessary.

5.566 × 103 + 7.777 × 103 = 1.3343 × 103 ≈ 1.334 × 103

b. The exponents must be equalized first.
3.344 × 101 + 8.877 × 10–2 = 3.344 × 101 + 0.008877 × 101 =

 3.352877 × 101 ≈ 3.352 × 101

9.39 a. 7.744 × 10–3 – 6.666 × 10–3 = 1.078 × 10–3

b. 8.844 × 10–3 – 2.233 × 10–1 = 0.08844 × 10–1 – 2.233 × 10–1 =
–2.14456 × 10–1 ≈ –2.144 × 10–1

9.40 a. 2.255 × 101 × 1.234 × 100 = 2.58267 × 101 ≈ 2.582 × 101

b. 8.833 × 102 ÷ 5.555 × 104 = 1.590 × 10–2

