Software Inspection Tool

Pssignmen,

On

Software Inspection Tool
Subject: Software Engineering II

Submitted to: Sir Muzaffar Hameed

Roll#: BSIT07-15

(PRYA LN,

AF A
<= s -
W L2\ B
> Wﬁ It J E

v ~-
2 &
-SE o 1975 -
UE:E {I lr'/G '-Jf;“

Department of Information Technology
Institute of Computing BZU MULTAN

Software Inspection Tool

Introduction and History of Software inspection

M.E. Fagan of IBM first introduced software inspections in 1974. Since that time the
technique proposed by Fagan has become well established in many businesses and has
resulted in both productivity and quality improvements. Research in the area of software
inspection has shown that when used properly, between 50 and 90 percent of the defects
in software artifact can be detected shortly after they are introduced. This not only
improves the quality of the software product, but dramatically reduces the costs
associated with correcting defects because they are uncovered soon after they are
introduced.

Unlike walkthroughs and other review techniques, software inspections are formal
and follow a well-defined process. The result of each inspection is a formal, quantitative
report that contains categorized defect data as well as inspection “process” data such as
preparation time. The information collected during an inspection is not only valuable for
its positive impact on product quality and costs, but also because it can be used as a
process control tool. The software inspection data from one development phase can be
used to improve, in ’real time” both the current phases and future phases of development.
For example, information from an inspection indicating a high number of data definition
defects in the design phase may indicate a need for better control of the requirements
phase. When this information is “feed back” to the requirements phase, improvements
can be immediately be made to the process. On the other hand, information from
inspection during the implementation phase that uncovers a high percentage of logic
defects could be “feed forward” to improve the testing phase. Software inspection data
can also be used to improve the inspection process itself.

List of performed Inspections

» Requirement Inspection
o DS - Diagnostic System
o IGUI - Integrated Graphical User Interface
o DAL - Data Access Library

* Design Inspection
o TM - Test Manager
o DS - Diagnostic System

* Code Inspection
o [IPC - Inter Process Communication
o MRS - Message Reporting System
o IS - Information Service
o DAL - Data Access Library

= 180 pages of documents

= 8000 lines of code

Software Inspection Tool

Software inspection is a group activity that, as stated earlier, follows a well-defined
process. A properly conducted inspection follows the process model shown in Figure 1.

Planning Overview Preparation Meeting
|~]

b 4 J

- " e =>_=,‘—.,t_":‘r=:< % >:="f=:<
Entry Iz pedors =
. L [
Criteria e p—
Iz pectors
Rework Follow-up
" Author —
Exit
Criteria
—

Figure 1: Software Inspection process model (Fagan).

As indicated by the model, there are several roles that should be represented in the
various phases of a properly done inspection. They are as follows:

» Author: The owner and/or producer of the work product being inspected.
= Inspector: A person responsible for detecting defect in the work product,
often chosen to represent a stakeholder in the development process (i.e.,
designer, tester, technical writer).

= Moderator: Responsible for organizing, executing, and reporting the
inspection.

= Reader: Guides the examination of the work product.

» Recorder: Enters defect information found during the meeting.

Software Inspection Tools

The task of creating a tool to support automated software inspection is a difficult
one. Like system development, the process of software inspection is highly cognitive and
the targets of inspection are usually artifacts that lack a high level of formality. The only
completely formal software system component that lends itself to any level of automated
inspection is the implementation code itself. The informal nature of artifacts such as
requirements specification and even design documents make them nearly impossible to
inspect these documents “automatically”. As the software engineering discipline moves
in the direction of formal methods and MDA, automated inspection will likely become
more of a reality.

Software Inspection Tool

The current selection of tools designed to support software inspection fall into one
of two categories. They either support the process by providing functionality that allows
collaborative and distributed inspection teams to function effectively or they provide only
code inspection capability. This paper will review tools from each category.

Collaborative Inspection Tools
Internet Based Inspection System (IBIS)

il TITIT
Current DateTime: Sunday, February 14, 20

Overview)
-Discovery Internet Based Inspection System

Collection

Discrimination
-Rework - - - - - -
Follow U IBIS is a web-based tool to support geographically dispersed inspection teams. Based on findings
S— ollow - . . i
P from empirical studies of software inspections. the IBIS tool adopts a reorganization of the inspection
process to minimize synchronous activities and coordination problems. The adopted inspection
process includes well-defined roles to be assigned to each member of the inspection team and seven
consecutive stages to be followed during the process.
|UserName |
G
|....'... |
]
Inspection Team |
The inspection team is a group of peer staff members with a special interest in the product to be
Forgot your Password? inspected. The minimum team size is three persons. although a team might scale up to an unlimited
Sign In number (in a traditional inspection process the typical team size may vary hetween three and seven).
The roles in an inspection team are:
1 13 Loadar Authaor | 1LY £,

- igre 2: BIS ersion’3.i)

IBIS is a tool developed by Lanubile and Mallardo, that supports distributed
asynchronous software inspection. The creators noted that there has been a recent history
successful distributed open-source projects and chose to use information from these
projects as a guide in designing IBIS. Like the typical open-source project, IBIS uses
web browsers and email readers as the primary client side communication tools. The use
of these common tools increases the probability that a large number of inspectors will
participate in a given project and also allows inspections to proceed asynchronously (this
is especially useful for geographically diverse teams). A UML deployment diagram
describing one view of the IBIS architecture is displayed as Figure 3.

Software Inspection Tool

Mail
Server

SMTP

POP3/IMAFPMHTTR

Application
Searver

Mail
Client

XML

files

VWeb Server

Client " Docs

Browser

Figure 3: IBIS deployment diagram.

The authors chose to slightly reengineer the inspection process to better support
distributed inspection. The reengineered process replaces the inspection meeting with the
following steps:

Discovery: Individual examination with the purpose of understanding
and defect detection.

Collection: Merge of individual defect lists. Duplicate defects are moved
directly to the rework phase.

Discrimination: Small team (or inspector-author pair) examination.

These three steps directly replace the meeting and all other inspection phases remain
unchanged.

IBIS provides a template for the planning phase of the inspection. With this
template, the moderator can define the artifact to be inspected, the purpose of the
inspection as well as the type and severity of the defects to be inspected for. The
planning template also provides for entry of each of the inspector’s contact information.
When the template is complete, IBIS generates e-mail to each of the inspectors notifying
them of the details. No special functionality exists for the overview stage outside of
allowing the inspectors to access background information.

During the Discovery phase, IBIS provides a log for recording defect information.
Only the checklist reading method is directly supported by the system. At any time, an
inspector can notify the system that he or she has completed the Discovery phase. When

5

Software Inspection Tool

this notification is received, a message is sent to the moderator and the moderator is then
allowed to browse each inspector’s discovery log.

alm =

Diaphic ale [T il B Heg¥ Page@ Trigger Type Seweady
r r 5 e Irformat on ey
i W anna Dhemcmption
Mispbicats Im el il ol Pagal Trigger Trpe S §
"1 5 B A3
= Inyia D riplinn J
Dhaphic ale I peciu e B Wy Pag=8 Trigger Trpe Heweady
1 EF 3 jmcomect_Fact Arvar
Do mec mpllioen
r gy
T A
Uuphicale Imspechyn ooluct Hagl Fagel Trigger Type Sevaly
| [hewr mplinn
onditicn iz not spesiked malic
Duphicate I il Tw iyl Pagad Trigger Trpe Fwwuda §
o [i —TT dinj
r My S b e il ien

Mhmphic afe [LET TS BT Flr b oyl Paged Trigger Type Hewndy

i i =l

Figure 4: IBIS Merged Inspection Log

The Collection phase commences with each of the discovery logs being merged (see
Figure 3). During this phase, the moderator looks for defects reported by more than one
inspector (duplicate defects). Duplicate defects are assumed to be valid and moved
directly to the rework phase. The search for duplicate defects is simplified by the ability
to sort the defect list in various ways.

After duplicate defect have been moved to the Rework phase, the remainder of the
defects are moved to the Discrimination stage. Here, the proposed defects are discussed
between all of the inspectors through the use of a discussion forum. Each proposed
defect is given a unique thread in the forum and the moderator may remove threads when
the disposition of a defect becomes evident.

IBIS supports the Rework phase by providing a defect resolution form that must
be completed by the author as he or she corrects each defect. As each defect is addressed
a notification message to the moderator is generated. The Follow-up stage is supported
with automatic generation and distribution of inspection summary reports.

IBIS appears is an inspection tool that does a good job of managing the “clerical”
duties surrounding any software inspection. Support for additional reading techniques
beyond checklists would make this a much more powerful tool. One of the major
advantages of this tool is that it is implemented using common WWW enabled
technologies, which should make it easily accessible to virtually any user with a modern
PC.

Software Inspection Tool

Collaborative Software Inspections (CSI)

CSI was developed by a team of researchers at the University of Minnesota at
Minneapolis to support distributed software inspections. The tool is designed to allow
the team to use either the Yourdon or the Humphrey inspection techniques, both of which
are variants of Fagan’s approach. The primary difference between the two techniques
and Fagan’s is in the preparation stage. Yourdon’s version of the preparation process
allows inspectors to informally note potential defects and other problems as well as
documenting any positive observations regarding the artifact being inspected. In
Humphrey’s approach to the preparation phase, each inspector develops a potential defect
list and forwards it to the work product author before the inspection meeting. The work
product author is then expected to address each of the faults during the inspection
meeting.

Conduction inspections using the CSI tool require that at least some of the
activities be conducted synchronously while others can be done asynchronously. The
asynchronous activities that CSI supports are:

Distribute target material — planning phase.
Review target material — preparation phase.
Merge potential faults — preparation phase.
Record inspection results — follow-up phase.

el

Activities that must be completed synchronously if using the CSI system are as follows:

1. Discuss faults — meeting phase.
2. Categorize faults — meeting phase.
3. Determine work product status — meeting phase.

Allowing each inspector to create annotations and creating hyperlinks to the annotation in
the source document support the asynchronous activities of the preparation phase. When
all of the inspectors have completed their initial review, the moderator is able to merge
the annotations into a master list. The master list is then available to all inspectors during
future phases of the process. The synchronous inspection activities (primarily the
meeting) are supported through real time display of the inspection materials including the
work product, fault list, annotation, action item list and a note pad for general
observations. Teleconf provides discussion capability. A typical arrangement of
windows used during the meeting phase is shown in Figure 5.

Software Inspection Tool

C Rl LT

Enter cocument neme: Cininit: Hajor = o defect thet would likely cese o problen in progran oeeralio,
Hiror = all other defects.

Hissing = required code i3 mot presemt,

Wrong & the code includer some errors.

Extre = Urreeded code i inchuded,

1.2 5] Demign Demcription
.21 Registration

The registration OS50 uses € classns, The related clast Sisgram 10

1

1

i

§ The poanible disporitions in sach calegery arel
& shown in figure 2a. The corrmsponding object diagram i shown in

B

5

1

1

Functjon. Lnlerface. dabe. logic. 1/, perforssnce. ssirienerce. shandsrds
Figure 2.b, Begistrafior class 12 mn Bcter obijech and uies Prints documeil gl iom, Suman Factors, wunles, ard olher,
Haile=, s Sermen Handlor,
Fault:

line_raber: 17

total rumber: O

category Rolabegory

diseosition: Rolissomition

deitr iplien <ln[nan

o Tl state trantition Maoren sasocisted with the tlass registratio

Iz shem in Flgurs 2.0,
Class Tems)stes:

1. Class Mame: Fatient
Btributen: Faalba:
L HE
Marss: OFF oo OGddresn
Kama: Homs Pddress
b (FFice Maone Husler
bz Home Praww Munli

Lire Tatal Latmuora Dispcsitien Bt it e

ir 1 HLnaw [t s Saould bresk thiz w in
q7 1 Hingr P gt o Dhange the Tirak “name

aroup Line Total Catwanry T et it Toaer (gt jon

e a4 1 Hajor locamait.a or I3 thix tims that the petient in adwitied”

Serare 17 2 Minor st Thould bresh thin o arte Faret. middle. e]aEt

e &] Hinor Data What iz @ room Lupe” [nieger or cherecter?

Yol % 4 Hiseing late Fatient’s date of Birth i3 missing

S i 5 Minoe Tocumert aiion Charge the first “rass’ to "Atteibuts Hess' o drop alis
Pawralt 2 & Midnurg Bt s Mase of Conbsct pereom im Cave of SRTgENGY 10 B ST,

Figure 5: Typical arrangement of windows during a CSI based inspection meeting.

The collaborative inspection in CSI is implemented through the use of several TCP/IP
enabled components (Figure 6). The Browser component displays the artifacts as well as
links to the other components necessary to conduct an effective inspection.

Ation item |

Naies on
the session

Figure 6: CSI component interaction diagram..

An Annotation component allows inspectors to record defects detected during the
preparation phase. The Fault List component is available to merge the individual defect

8

Software Inspection Tool

lists, and to categorize and sort the individual defects for simplified analysis. A Note Pad
is available to allow inspectors to record general observations that may apply to the
artifact as a whole and not to an individual line of information. The results of the
inspection meeting stored in an Action List component that has sorting and categorizing
capability that is similar to the fault list. The Criteria component acts as a roadmap for
the inspectors, providing them with guidelines for detecting defects. CSI also includes an
Inspection Summary component that provides logging and reporting functionality.

When compared to IBIS, CSI is significantly older technology. It appears to be a
good general-purpose preparation and meeting tool, but the fact that it is implemented
with custom components can present a major drawback. It also appears that CSI lacks
the capability to support artifacts that are not text based (like UML diagrams). This
presents another potential drawback to today’s Software Engineer.

JStyle

JStyle is a Java code inspection tool developed by Man Machine Systems. Its primary
function is to parse Java source code and analyze it for common coding problems. JStyle
ships with about 100 preinstalled “rules” for evaluating various aspects of the source
code. The product also allows the user to create customized rules using either VBScript
or JMScript scripting language and providing access to the source code parse tree
generated when the code is analyzed. The built in rules fall into several categories and
each rule is assigned a severity level between 1 and 7 with one being lowest risk and 7
being highest. Unfortunately, no indication of the meaning of the severity levels could be
found in the JStyle literature. In order to present a better idea of JStyle’s capabilities,
following is an example of one rule from each of the categories:

Category Rule # Description Severity
Class M.e mber ST1041 | Abstract method can't be private or final. 3
Specific

In a non-public class, there is no need for

: 3
a public constructor.

Class Specific ST1044

The 'return’ statement in 'finally' block
Exception Handling | ST1009 nullifies the effect of 'return' found 7
within 'try' block. Check this design.

Explicit call to finalize() does not alter

Finalizer Specific ST1014 the 'ac state of the object.

The return value of the method call is
General STI079 ignored. Check whether this is intended. !

Inner/Anonymous An inner class of non-public class need

Class ST1045 not be public. 3
Naming Convention | ST1020 The required 1nt§rf'flce name prefix is 1
missing.
There is no need to make a copy of a
Performance STO169 String object. Strings are immutable. 4
Redundant ST1053 | This method has a parameter that is not 4

9

Software Inspection Tool

Declaration used.

If you catch ThreadDeath, ensure that
Thread Specific ST1016 | you throw it back. Otherwise, the thread 7
won't die.

Field in the class hides one of the super

Variable Hiding ST1050 class fields.

The JStyle user interface is similar to those of common integrated development
environments and should be intuitive to most users. It allows easy switching between the
source files, comments and metrics. Comments that are generated due to rule violations
are hyper-linked to the attributable source for easy evaluation and correction. Code
evaluation is completed amazingly fast. JStyle completed analysis of the Azureus project
(containing over 850 files, see below) in about 1 minute, making it suitable for use on
larger scale projects. A typical display immediately following code evaluation is shown
in Figure 7.

Mlyle C:MIocume als aml Sellings35] eyeiiy Hocumen 35 EEERSo [ware InspoelionsUS ylelacurcus. =1 | Commen| Bejorl | = =
[5 Ae Edt Mew Project Sstings Todk SoRRG Repots Window Help = o e
DM & % #A L a2 e
|| Tl AR H (B & A - R i)
== [-! Claczification | File | EEHEFIR’i i’
= amﬁu B Fllﬂ A 155001 Cless member suecfic comments GlobalMenagerstatsimpl.javaiBe) E)
[T] Abstractmaew. jms 135001 | Cless mamber pecific comments GlobalMenagerEtatsimpliavai@zy
% AbstrxbiearPam s 135001 |Class member spacific commenits GlohalpanJEEumn Lfigudy| =2 weer Jeage) |
AEWIN 32 ACoess,
[7] AEmMnIzAc Eja\fpﬂun.jam 155001 [Cless member speeific comments GlobalMenager=Statsimpl.javail0o) El
m JAEWind2dcomsEaeapionlmplje 155001 | Cless member mecific comments GlobalMenagerStatzImpljavailod) 3
Fi ﬁmnggxmmdf“ v STLOZT ;Naming conventbon cormments SrartstopAulasDefauttPlugin javalis) 1
n erface,
[T AEWinIZkanoger.jars STLOST (Clazs member speeific comments StartStopAulesOafauktPlugin jawa(1072) 4
Alerts Jaria STLOST [Cless mesmber mecific comments SkartEtopRulesDefaulPlugin jave {10072 4
[T Akomedupmemjavs 2 A
@ fninablaShelpn STLOS? [Class member specific commerts StartstepAulasDefaultplugin javali1ozy 4
[T Anknator b 155001 Clezs member eefic comments StartStopAulesOefauktPlugin jave(l34) k)
% B STL1S |Comments relatad to Excoption handling, StartStopAulesDefaubtPlugin jawrea(174) §
Applcation,j:
Ei ALLH:M_M STLOTY | General Comments StartStopRulesOefaultPlugin jars(199) 1
m Jutbericatordindowjava 155001 | Cless member pecific comments StartEtopRulasCefaubPluginjare {364, 3
% :::Emﬂﬁ ATL04% Aedundant Declaration atartStopAulesDefaukplugin javaldss) k]
D Bversgs.imea) STLOTY | General Commients StartStopRulesOafaultPlugin jawa(d3no) 1
m AVBIE0eErnesIn e Java STLi0d5 |Amdundart Ceclarstion SkartEtopRulnsDefaulPlugin jawaldéd) 3
A . . = e
i Euﬂﬂgﬂrﬂtﬂﬂ; crochi iawr“ ETLO0S |Comments related to Excention handling StartStopAulesDefauttAlugin javalaes) ?
[T Exdips.|ava STLO1S Corameants related to Excepban handling: StartStopRulesOefauktPlugin jawe(629) 5
% Baclipsimgi. v STL07Z |Performance StartStopRulasDiefaultPlugin jewaliel) 3
BewicFboginConfighodl, jrva : " A
[EedcrhodnCoriiodslomal, jave ™ STLO0S | Ccarmeants ralated to Excapton handling: StartStopAulasDefaukprlugin jaralaes) ?
L3 I ¥ STLO1S |Cormments relsted to Excepbion handling! StartStopAulesOefaultPlugin java(E99) 5
_, Prjmcl ... T Clects .. ? Irfia Wiem FTLO7E |Performance StartEtopAulesDefaukPlugin jawe (687 k] e
K| | Gerraling Commerk .. ™
:| Comnenl Geresation compleled.
03.3651P
Gerralieg reports..
Aepoil genenlion completed
03.3651PM
W
T T, Memeoge A, Smarch Fianke | S
For Help, press Fi ni, Coll WM

Figure 7: JStyle screenshot immediately following code evaluation.

10

Software Inspection Tool

OStudio

QStudio is a java code analysis tool provided by QA
Systems, Inc. The basic version, QStudio Pro, was
QStudio® Enterprise available for free and was the product that was evaluated for
The Software Assessment Tool | this survey. Like the other tools already discussed, QStudio
ships with well over 150 rules for analysis pre-installed.
| Each of the rules is associated with a quality attribute, a

quality sub-attribute, and an impact level. The impact level
is a number between 1 and 5 with 1 being the lowest an 5 being the highest which
indicates how significantly the rule violation impacts the quality of the Java code. Rules
with an impact level of 1 may only represent minor annoyances to the developer while a
5 indicates a violation which could likely lead to product failure. Following are a few
selected examples of the rules that ship with QStudio.

Quality Quality

No. | Attribute Sub-Attribute

Rule Impact

Always use method equals() to

compare objects. 4

2 Reliability Failure Liability

Avoid shadowing fields of a class
124 | Maintainability Clarity or its superclasses and interfaces 3
by local variables of a method.

Platform Do not use hard-code positions or

186 Portability size of a GUI element. 3
Conformance
A @return tag is specified for
e Style method method name, but this
232 | Maintainability Conformance method returns void. Could you 2

remove the @return tag?

QStudio also allows the creation of user defined rules. User defined rules are supported
through the use of the open source PMD specification which makes use of the Visitor
pattern. In short, PMD uses the JavaCC parser generator and JJTree to create an abstract
syntax tree form the source code. New rules are added by extending the
“net.sourceforge.pmd.AbstractRule” class, and implementing at least one of its visit()
methods.

As stated earlier this survey used the “free” version of QStudio. The user
interface is simple and intuitive, but this version lacks any reporting or summarizing
tools, making it difficult to get an overview of the code inspection results. In addition,
code analysis using QStudio takes much longer than with the other tools evaluated. It
took about an hour to complete the analysis that the other tools were able to complete in
minutes, using the same source files.

11

Software Inspection Tool

AppPerfect

AppPerfect is a Java Development environment that
App includes many software engineering related tools, one of
which is dedicated to code analysis. Like the other
tools, AppPerfect ships with numerous “built-in” rules
(about 125). The rules are divided into 13 categories and 4 severity levels (low, medium,
high, and critical).A few selected rules follow:

Category Rule Severity
Use BufferedInputStream and BufferedOutputStream
Optimization or equivalent buffered methods wherever possible; Critical

doing I/O a single byte at a time is very slow.

System.out.println statements and similar constructs

Portability synchronize processing for the duration of disk I/O and High
can significantly slow throughput.
Metrics Complexity of any method should be less than 6. Medium
Security Make classes non-serializable. Medium

Of the tools evaluate AppPerfect seems to have the most intuitive method for
categorizing rules. User defined rules are available through the use pre-defined
“general”, “function”, and “datatype” tags. Unfortunately, the documentation regarding
user defined rules was of almost no value in helping understand how to create a
customized rule.

The user interface is similar to the other tools that have been discussed and
sufficient reporting, view and summarizing features are available. AppPerfect is also
capable of calculating several basic project metrics that can be valuable for quantitative
process control. Analysis with AppPerfect, while not the quickest of the tools evaluated
was still completed in an about 3 minutes.

Load Testing: Also referred to as Performance testing or stress testing involves
simulating heavy user load to ensure your application or Web site can handle it
effectively. AppPerfect experts utilize the AppPerfect Web Load Test product to build
sophisticated tests to ensure you can go live with confidence. We can fully automate the
testing to make it a part of your process. We can help analyze results and pin-point
problem areas.

Functional Testing: Testing software to ensure your applications implement your
business objectives. We can also automate these tests to ensure no regressions are
introduced over time.

Java Testing: - Java testing services are built around three core product offerings: Java

code analysis, Java unit testing and Java profiling. We can automate the Java testing into
your development process to make it a seamless means to ensure Java code quality on a

12

Software Inspection Tool

continuous basis. Our services can assist you with complex tasks such as memory leak
detection, performance bottlenecks, multi-threading issues, etc.

Product customization: On the rare occasion when our products cannot meet your
requirements out-of-the-box, we offer product customization services to add a new
feature or modify/enhance an existing feature to meet your needs.

oAppI\cat\ons Places system B @ 4] g root Mon Sep 14, 2:46 PM ufj)
@

Hle Edit View History Bookmarks Tools Help

p.o

ﬁ ﬁ |§| file //fhomefexceed/AppPerfect/LoadTest/readme/readme. html w v

Most Visited~ £3)Smart Bookmarks~ @ Release Notes [E3Fedora Projectv [E3Red Hatwv [E3free Contentw

AppPerfect Load Test v 11.0.1 Build 20090911-3391

Fle Edit Miew Terminal Tabs Help
SmsLib SMS library for the Java platform (http://smslib.org/) 2

spring Framework (http://www.springframework.org/)
StrutsTestCase for JUnit (http://strutstestcase.sourceforge.net/)
Subclipse plug-in for Subversion (http://subclipse.tigris.org/) AppPerfect LoadTest_11.0.1

Subversion Server (http://subversion.tigris.org/) FAle Edit view Places Help
Web Services Description Language for Java (http://wsdl4j.sourceforge.nefy = = = = =

Westhawk's SNMP stack in Java (http://snmp.westhawk.co.uk)
Do you agree to the above license terms? [yes or noj(no): yes

Confirmation AppPerfect LoadTest Documentation and AppPerfect LoadTest
Service Examples
Do you want to create links 7 _

Choose options [y, nl{yes): y

Please enter link folder location (/root): @
Please enter Service Startup Port (8874):
Please enter Service Shutdown Port (8875): Uninstall
Please enter Username to start service (root): user
Press ENTER to continue ...

Extracting files...

Downloading ...

Extracting files...

Finishing installation...
[root@fedora AppPerfect]# |:| [F3 AppPerfect LoadTe... v ‘License Agreement" selected (12.0 KB)

WU IS JECKAgE. [0S QUICK, Bdsy, SEN-CONEINeED aiawil give you manus-onn v=inimg on uie prodiuct

Getting Help

If at any time during your use of this product, you require technical assistance, you should contact AppPerfect Technical Support at support@AppPerfectcom or visit
http/iwwan. AppPerfect com/supportfindex. html

Documentation v
Done

[| B root@fedora:~/AppP... |] AppPerfect LoadTest.. | @ AppPerfect Load Test

i
]

CodeSurfer

Codesurfer is a powerful C and C++ source code analysis and navigation tool. It displays
information about your program at an unprecedented level of detail.

Codesurfer is a new tool for easier and more precise navigation and understanding of
source code. Codesurfer has many uses, including program understanding, maintenance,
impact analysis, debugging, reengineering, and reuse.

Codesurfer is unique because it enables you to identify and navigate the "deep structure"
of your program effortlessly. The deep structure comprises the direct and indirect
relationships, or dependences, within your source code. These are the semantic threads
that reveal exactly how your program works.

13

Software Inspection Tool

Cﬁdé_Surf;r

. GrammaTec
CogeSu rfeu

—dik

JTest by Parasoft

ParaSoft's Jtest 3.0 is a powerful automated tool for testing Java classes. Developers
can unit-test their code for completeness and standards compliance and conduct
regression tests to ensure that changes they've made to their code haven't introduced

errors.

White Box Testing

Anyone who has survived a long testing project knows that one of the most tedious
processes is writing test cases. Jtest is the first testing application that generates unit test
cases based on the internal structure of your classes. Using patented technology, Jtest
examines byte code, trying to break the class by attempting to pass unexpected variables

to its methods.

To begin white box testing, open Jtest and browse to the class you'd like to test. To test
multiple classes, go to the Project Testing UI and select the directory, zip or jar file of
classes. After this is completed, press the start button and wait for Jtest to conduct its

tests.

Mow there is a faster,
easier way to analyze
-~ and understand source code.
L1511

File Edit QueI

[F e 05

#inelde “exsmpde. 4

| Data Predecessors:

[expression] p = &wvel
[expression] welocity

subspstemflphad);
subspstemBetad);

howrs per mile = 1 /5

subzpstend anmay) ;

14

zubsystemAlpha
subspstemBeta
subsystens anmna
Global variables
Static variables
[Al include files

Software Inspection Tool

Jlint 3.0

Jlint check Java code and find bugs,
inconsistencies and synchronization
problems by doing data flow
analysis and building the lock graph.
Finds unreachable code
Threading/lock problems

More than just coding standard
checking

Find bugs that even manual inspections can’t find — not even by experienced
staft!

PMD

PMD scans Java source code and looks for potential problems like:

7/
L X4

X/
o0

7/
L X4

7/
L X4

X/
o0

Possible bugs - empty try/catch/finally/switch statements
Dead code - unused local variables, parameters and
private methods

Suboptimal code - wasteful String/String Buffer usage
Overcomplicated expressions - unnecessary if statements,
for loops that could be while loops

Duplicate code - copied/pasted code means copied/pasted
bugs

DON'T SHOOT THE MESSENGER

Conclusion

Inspections are better and cheaper in finding defects than testing alone

Earlier detection of defects are possible by inspections

Manual inspections do take a lot of time and may not catch all defects for
complex multi-threaded OO software

Static Analysis tools and Reading Techniques alleviate some of these problems
QA plays a key role in leading the inspection process and educating staff in
processes, procedures, static analysis tools and in reading techniques

15

	Software Inspection Tools
	Collaborative Inspection Tools
	Collaborative Software Inspections (CSI)

